Инд. авторы: Sukhorukov V., Turkina O.M., Tessalina S., Talavera C.
Заглавие: Orthopyroxene-sillimanite granulites of the Angara-Kan block (SW Siberian craton): Constraints on timing of UHT metamorphism
Библ. ссылка: Sukhorukov V., Turkina O.M., Tessalina S., Talavera C. Orthopyroxene-sillimanite granulites of the Angara-Kan block (SW Siberian craton): Constraints on timing of UHT metamorphism // Journal of Asian Earth Sciences. - 2021. - Vol.207. - Art.104650. - ISSN 1367-9120. - EISSN 1878-5786.
Идентиф-ры: DOI: 10.1016/j.jseaes.2020.104650; РИНЦ: 45027881; WoS: 000613282400003;
Реферат: eng: We report here the evidence of protracted metamorphic evolution of orthopyroxene-sillimanite granulite culminating in UHT metamorphism within the Paleoproterozoic granulite complex of the Angara-Kan block (SW Siberian craton). The Opx-Sil granulites were formed during UHT metamorphism (T = 1070-1100 degrees C and P = 9 kbar) at ca. 1.8 Ga which was followed by retrograde isobaric cooling down to the temperature around 900-950 degrees C. At ca. 1.74 Ga Opx-Sil granulites were trapped and partly reworked by a granitic melt with crystallization of perthitic feldspar at about 750 degrees C. The integration of all data on metamorphism and granitoid magmatism of the Angara-Kan block indicates two staged metamorphic history. The first stage of the granulite facies metamorphism occurred in the time range of 1.89-1.85 Ga and was terminated by the emplacement of the 1.84 Ga post-collisional granites, the second stage of metamorphism occurred at UHT conditions and culminated in 1.78-1.8 Ga. The UHT metamorphism including the isobaric cooling retrograde stage and granite magmatism had a duration of 30 to 60 million years from 1.78-1.8 to 1.74-1.75 Ga.
Ключевые слова: ZIRCON; DEGREES-C; YENISEY RANGE; RICH GRANULITES; EASTERN SIBERIA; NAPIER COMPLEX; TRACE-ELEMENT GEOCHEMISTRY; HIGH-TEMPERATURE METAMORPHISM; Paleoprotherozoic; Angara orogenic belt; Angara-Kan block; Granulite; UHT metamorphism; Siberian craton; U-PB; SAPPHIRINE;
Издано: 2021
Физ. хар-ка: 104650
Цитирование: 1. Aranovich, L.Y., Podlesskii, K.K., Geothermometry of high-grade metapelites: simultaneously operating reactions. Daly, J.S., Cliff, R.A., Yardley, B.W.D., (eds.) Evolution of Metamorphic Belts, 43, 1989, Geological Society Special Publication, London, 45–62.
2. Bibikova, E.V., Gracheva, T.V., Kozakov, I.K., Plotkina, Y.V., U-Pb age of the hypersthene granites (kuzeevites), Angara-Kan Inlier (Yenisei Range). Geol. Geofiz. 42:5 (2001), 864–867 (in Russian).
3. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200 (2003), 155–170.
4. Carson, C.J., Ague, J.J., Coath, C.D., U-Pb geochronology from Tonagh Island, East Antarctica: implications for the timing of ultra-high temperature metamorphism in the Napier Complex. Precambr. Res. 116 (2002), 237–263.
5. Claoue-Long, J.C., Compston,W., Roberts,J., Fanning, C.M., Aubry,M.P., Hardenbol, J., 1995. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40 Ar/ 39 Ar analysis. In: Berggren, W.A., Kint, D.V. (Eds.), Geochronology, Timescales and Global Stratigraphic Correlation. Society for Sedimentary Geology Special Publications 54, pp. 3–21.
6. Compston, W., Williams, I.S., Meyer, C., U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res., 89(S02), 1984, B525, 10.1029/JB089iS02p0B525.
7. Condie, K.C., Precambrian granulites and anorogenic granites: are they related?. Precambr. Res. 51 (1991), 161–172.
8. Connolly, J.A.D., Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am. J. Sci. 290 (1990), 666–718.
9. Connolly, J.A.D., The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst., 10, 2009, 10.
10. Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of Zircon Textures. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Review Mineral. Geochem. vol. 53.Mineralogical Society of America, Washington, D.C, pp. 469-500.
11. De Laeter, J.R., Kennedy, A.K., A double focusing massspectrometer for geochronology. Int. J. Mass Spectrom. Ion Processes 178 (1998), 43–50.
12. Fedotova, A.A., Bibikova, E.V., Simakin, S.G., Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochem. Int. 46:9 (2008), 912–927.
13. Ferry, J.M., Watson, E.B., New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Miner. Petrol. 154 (2007), 429–437.
14. Fuhrman, M.L., Lindsley, D.H., Ternary-feldspar modeling and thermometry. Am. Mineral. 73 (1988), 201–215.
15. Gerya, T.V., Maresh, W.V., Metapelites of the Kanskiy granulite complex (eastern Siberia): kinked P-T paths and geodynamic model. J. Petrol. 45:7 (2004), 1393–1412.
16. Gladkochub, D.P., Donskaya,T.V., Reddy, S.M., Poller, U., Bayanova, T.B., Mazukabzov,A.M., Dril, S., Todt, W., Pisarevsky, S.A., 2009. Paleoproterozoic to Eoarchaean crustal growth in southern Siberia: a Nd-isotope synthesis. In: Reddy, S.M., Mazumder, R., Evans, D.A.D., Collins, A.S. (Eds.), Paleoproterozoic Supercontinents and Global Evolution. Geological Society of London, Special Publication 323, pp. 127–143.
17. Gladkochub, D.P., Mazukabzov, A.M., Stanevich, A.M., Donskaya, T.V., Motova, Z.L., Vanin, V.A., Precambrian sedimentation in the Urik-Iya Graben, southern Siberian Craton: main stages and tectonic settings. Geotectonics 48:5 (2014), 359–370.
18. Gladkochub, D.P., Pisarevsky, S.A., Ernst, R., Donskaya, T.V., Söderlund, U., Mazukabzov, A.M., Hanes, J., Large igneous province of about 1750 Ma in the Siberian Craton. Dokl. Earth Sci. 430:2 (2010), 168–171.
19. Harley, S.L., Ultrahigh temperature granulite metamorphism (1050°C, 12 kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, East Antarctica. J. Metamorph. Geol. 16 (1998), 541–562.
20. Harley, S.L., Refining the PT records of UHT crustal metamorphism. J. Metamorph. Geol. 26 (2008), 125–154.
21. Harley, S.L., A matter of time: the importance of the duration of UHT metamorphism. J. Mineral. Petrol. Sci. 111 (2016), 50–72.
22. Harley, S.L., Kelly, N.M., Möller, A., Zircon behaviour and the thermal history of mountain chains. Element 3 (2007), 25–30.
23. Harley, S.L., Motoyoshi, Y., Al zoning inorthopyroxene ina sapphirine quartzite: evidence for N1120 degrees C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contrib. Miner. Petrol. 138:4 (2000), 293–307.
24. Hensen, B.J., Harley, S.L., Graphical analysis of P-T–X relations in granulite facies metapelites. Ashworth, J.R., Brown, M., (eds.) High Temperature Metamorphism and Crustal Anatexis. The Mineralogical Society Series. Mineralogical Society of Great Britain [by], 1990, Unwin Hyman, London Boston-Sydney-Wellington, United Kingdom, 19–56.
25. Hokada, T., Feldspar thermometry in ultrahigh-temperature metamorphic rocks: evidence of crustal metamorphism attaining ~1100 °C in the Archean Napier Complex, East Antarctica. Am. Mineral. 86 (2001), 932–938.
26. Hokada, T., Harley, S.L., Zircon growth in UHT leucosome: constraints from zircon/garnet rare earth element (REE) relations in Napier Complex, East Antarctica. J. Mineral. Petrol. Sci. 99 (2004), 180–190.
27. Hoskin, P.W.O., Black, L.P., Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 18 (2000), 423–439.
28. Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Review Mineral. Geochem. vol. 53. Mineralogical Society of America, Washington, D.C, pp. 27-62.
29. Kelly, N.M., Harley, S.L., An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib. Miner. Petrol. 149 (2005), 57–84.
30. Kelsey, D.E., White, R.W., Powell, R., Orthopyroxene–sillimanite–quartz assemblages: distribution, petrology, quantitative P-T–X constraints and P–T paths. J. Metamorph. Geol. 21 (2003), 439–453.
31. Kelsey, D.E., White, R.W., Holland, T.J.B., Powell, R., Calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2-H2O for sapphirine-quartz-bearing mineral assemblages. J. Metamorph. Geol. 22 (2004), 559–578.
32. Kennedy, A.K., de Laeter, J.R., 1994. The performance characteristics of the WA SHRIMP II ion microprobe. Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology. Berkeley, USA. Abstracts Vol., U.S. Geological Survey Circular. vol. 1107, 166.
33. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., Krylov, A.A., Kozlov, P.S., Khiller, V.V., Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the south Yenisei ridge and tectonic implications. Petrology 24:4 (2016), 392–408.
34. Ludwig, K.R., Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochron, Center Spec. Publ., 4, 2003, 70.
35. Ludwig, K.R., 2009. SQUID II., a user's manual. Berkeley Geochronology Center Special Publication 2, 2455 Ridge Road, Berkeley, CA 94709, USA, 22.
36. Marsh, J.H., Stockli, D.F., Zircon U-Pb and trace element zoning characteristics in an anatectic granulite domain: Insights from LASS-ICP-MS depth profiling. Lithos 239 (2015), 170–185.
37. Nozhkin, A.D., Bibikova, E.V., Turkina, O.M., Ponomarchuk, V.A., U-Pb, Ar–Ar, and Sm–Nd isotope-geochronological study of porphyritic subalkalic granites of the Taraka pluton (Yenisei Range). Russ. Geol. Geophys. 44 (2003), 879–889.
38. Nozhkin, A.D., Turkina, O.M., 1993. Geochemistry of Granulites from Kansk and Sharyzhalgay Complexes. UIGGM, Novosibirsk (in Russian) (233 pp.).
39. Nozhkin, A.D., Turkina, O.M., Bayanova, T.B., Paleoproterozoic collisional and intraplate granitoids of the southwest margin of the Siberian Craton: petrogeochemical features and U-Pb geochronological and Sm–Nd isotopic data. Dokl. Earth Sci. 428:7 (2009), 1192–1197.
40. Nozhkin, A.D., Turkina, O.M., Likhanov, I.I., Dmitrieva, N.V., Late Paleoproterozoic volcanic associations in the southwestern Siberian craton (Angara-Kan block). Russ. Geol. Geophys. 57 (2016), 247–264.
41. Perchuk, L.L., Gerya, T.V., Nozhkin, A.D., Petrology and retrogression in granulites of the Kanskiy Formation, Yenisey Range, Eastern Siberia. J. Metamorph. Geol. 7 (1989), 599–617.
42. Pidgeon, R.T., Macambria, M.J.B., Lafon, J.-M., Th-U-Pb isotopic systems and internal structures of complex zircon from an enderbite from the Pium Complex, Carajás Province, Braszil: evidence for the ages of granulite facies metamorphism and the protolith of the enderbite. Chem. Geol. 166 (2000), 159–171.
43. Powell, R., Holland, T., Relating formulations of the thermodynamics of mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and micas. Am. Mineral. 84 (1999), 1–14.
44. Rogers, J.J.W., Santosh, M., Consuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res. 5:1 (2002), 5–22.
45. Rosen, O.M., Condie, K.C., Natapov, L.M., Nozhkin, A.D., Archaean and Early Proterozoic evolution of the Siberian Craton: a preliminary assessment. Condie, K.C., (eds.) Archaean Crustal Evolution, 1994, Elsevier, Amsterdam, 411–459.
46. Rosen, O.M., The Siberian Craton: tectonic zonation and stages of evolution. Geotectonics 37 (2003), 175–192.
47. Rosen, O.M., Turkina, O.M., The oldest rocks assemblages of the Siberian craton. Van Kranendonk, M.J., Smithies, R.H., Bennett, V.C., (eds.) Earth's Oldest Rocks, 2007, Elsevier, Amsterdam, 793–838.
48. Rubatto, D., Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 184 (2002), 123–138.
49. Santosh, M., Tsunogae, T., Li, J.H., Liu, S.J., Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: implications for Palaeoproterozoic ultrahightemperature metamorphism. Gondwana Res. 11 (2007), 263–285.
50. Smelov, A.P., Timofeev, V.F., The age of the North Asian Cratonic basement: an overview. Gondwana Res. 12 (2007), 279–288.
51. Smith, J.V., 1974. Feldspar Minerals. V.1. Crystal Structure and Physical Properties. Springer-Verlag, Berlin (625 pp.).
52. Smith, C.A., Van Reenen, D.D., Gerya, T.V., Varlamov, D.A., Fed'kin, A.V., Structural-metamorphic evolution of the Southern Yenisey Range of Eastern Siberia: implications for the emplacement of the Kanskiy granulite Complex. Mineral. Petrol. 69 (2000), 35–67.
53. Sobolev, A.V., Migdisov, A.A., Portnyagin, M.V., Distribution of admixture elements among clinopyroxene and basaltic melt: results of study of melt inclusions in minerals from the Troodos massif. Cyprus. Petrology 4:3 (1996), 326–336.
54. Stern, R.S., 2001. A New Isotopicand Trace-element Standard forthe Ion Microprobe: Preliminary Thermal Ionization Mass Spectrometry (TIMS) U-Pb and Electron-microprobe Data. Current ResearchGeological Survey of Canada (2001-F1).
55. Stern, R.S., Bodorkos, S., Kamo, S.L., Hickman, A.H., Corfu, F., Measurement of SIMS instrumental mass fractionation of Pb-isotopes during zircon dating. Geostand. Geoanal. Res. 33 (2009), 145–168.
56. Sukhorukov, V.P., Turkina, O.M., 2014a. Hyperstene-sillimanite assemblages in gneisses of Angara-Kan granulite block: occurrence of UHT metamorphism on Yenisey ridge. Precambrian High-grade Mobile Belts. KRC RAS, Petrozavodsk, p. 108.
57. Sukhorukov, V.P., Turkina, O.M., Estimation of the P-T parameters for the latest stage of Paleoproterozoic metamorphism in the Angara-Kan block of the Yenisei Ridge. Dokl. Earth Sci. 459:1 (2014), 1375–1380.
58. Sukhorukov, V.P., Gladkochub, D.P., Turkina, O.M., a. The First Finding of Sapphirine in Granulites of the Angara-Kan Block: Evidence of Ultra-High–Temperature Metamorphism in the SW Siberian Craton. Dokl. Earth Sci. 479:2 (2018), 443–447.
59. Sukhorukov, V.P., Turkina, O.M., Tessalina, S., Talavera, C., b. Sapphirine-bearing Fe-rich granulites in the SW Siberian craton (Angara-Kan block): Implications for Paleoproterozoic ultrahigh-temperature metamorphism. Gondwana Res. 57 (2018), 26–47.
60. Tajcmanová, L., Connolly, J.A.D., Cesare, B., A thermodynamic model for titanium and ferric iron solution in biotite. J. Metamorph. Geol. 27 (2009), 153–164.
61. Turkina, O.M., Berezhnaya, N.G., Lepekhina, E.N., Kapitonov, I.N., U-Pb (SHRIMP II), Lu-Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut terrane, Sharyzhalgay Uplift: implications for the Neoarchaean evolution of the Siberian Craton. Gondwana Res. 21 (2012), 801–817.
62. Turkina, O.M., Nozhkin, A.D., Bayanova, T.B., Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian craton. Petrology 14:3 (2006), 262–283.
63. Turkina, O.M., Sukhorukov, V.P., Stages and conditions of metamorphism of mafic granulites in the Early Precambrian complex of the Angara-Kan terrane (southwestern Siberian Craton). Russ. Geol. Geophys. 56 (2015), 1544–1567.
64. Urmantseva, L.N., Turkina, O.M., Larionov, A.N., Metasedimentary rocks of the Angara-Kan granulite-gneiss block (Yenisey Ridge, south-western margin of the Siberian Craton): provenance characteristic, deposition and age. J. Asian Earth Sci. 49 (2012), 7–19.
65. Vavra, G., Schmid, R., Gebauer, D., Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to granulite facies zircons: geochronology of the Ivrea zone (Southern Alps). Contribut. Mineral. Petrol. 134 (1999), 380–404.
66. Williams, I.S., 1998. U–Th–Pb geochronology by ion-microprobe. In: McKibben, M.A., ShanksIII, W.C., Ridley, W.I. (Eds.), Reviews in Economic Geology 7, 1–35.
67. Yang, Q.-Y., Santosh, M., Tsunogae, T., Ultrahigh-temperature metamorphism under isobaric heating: new evidence from the North China Craton. J. Asian Earth Sci. 95 (2014), 2–16.
68. Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., A review of the global 2.1–1.8 Ga orogens: implications for a pre-Rodinian supercontinent. Earth Sci. Rev. 59 (2002), 125–162.