Инд. авторы: Palyanov Y.N., Borzdov Y.M., Sokol A.G., Bataleva Y.V., Kupriyanov I.N., Reutsky V.N., Wiedenbeck M., Sobolev N.V.
Заглавие: Diamond formation in an electric field under deep Earth conditions
Библ. ссылка: Palyanov Y.N., Borzdov Y.M., Sokol A.G., Bataleva Y.V., Kupriyanov I.N., Reutsky V.N., Wiedenbeck M., Sobolev N.V. Diamond formation in an electric field under deep Earth conditions // Science Advances. - 2021. - Vol.7. - Iss. 4. - Art.eabb4644. - ISSN 2375-2548.
Идентиф-ры: DOI: 10.1126/sciadv.abb4644; РИНЦ: 44985837; PubMed: 33523914; WoS: 000610099000004;
Реферат: eng: Most natural diamonds are formed in Earth's lithospheric mantle; however, the exact mechanisms behind their genesis remain debated. Given the occurrence of electrochemical processes in Earth's mantle and the high electrical conductivity of mantle melts and fluids, we have developed a model whereby localized electric fields play a central role in diamond formation. Here, we experimentally demonstrate a diamond crystallization mechanism that operates under lithospheric mantle pressure-temperature conditions (6.3 and 7.5 gigapascals; 1300 degrees to 1600 degrees C) through the action of an electric potential applied across carbonate or carbonate-silicate melts. In this process, the carbonate-rich melt acts as both the carbon source and the crystallization medium for diamond, which forms in assemblage with mantle minerals near the cathode. Our results clearly demonstrate that electric fields should be considered a key additional factor influencing diamond crystallization, mantle mineral-forming processes, carbon isotope fractionation, and the global carbon cycle.
Ключевые слова: FLUIDS; INCLUSIONS; TEMPERATURE; MELTS; GROWTH; MANTLE; HIGH-PRESSURE; CARBON-ISOTOPE FRACTIONATION; CONDUCTIVITY; REDUCTION;
Издано: 2021
Цитирование: 1. S. E. Haggerty, A diamond trilogy: Superplumes, supercontinents, and supernovae. Science 285, 851-860 (1999).
2. T. Stachel, G. P. Brey, J. W. Harris, Inclusions in sublithospheric diamonds: Glimpses of deep Earth. Elements 1, 73-78 (2005).
3. T. Stachel, T. Chacko, R. W. Luth, Carbon isotope fractionation during diamond growth in depleted peridotite: Counterintuitive insights from modelling water-maximum CHO fluids as multi-component systems. Earth Planet. Sci. Lett. 473, 44-51 (2017).
4. S. B. Shirey, P. Cartigny, D. J. Frost, S. Keshav, F. Nestola, P. Nimis, G. D. Pearson, N. V. Sobolev, M. J. Walter, Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75, 355-421 (2013).
5. S. B. Shirey, K. V. Smit, G. D. Pearson, M. J. Walter, S. Aulbach, F. E. Brenker, H. Bureau, A. D. Burnham, P. Cartigny, T. Chacko, D. J. Frost, E. H. Hauri, D. E. Jacob, S. D. Jacobsen, S. C. Kohn, R. W. Luth, S. Mikhail, O. Navon, F. Nestola, P. Nimis, M. Palot, E. M. Smith, T. Stachel, V. Stagno, A. Steele, R. A. Stern, E. Thomassot, A. R. Thomson, Y. Weiss. Diamonds and the mantle geodynamics of carbon, in Deep Carbon (Cambridge, 2019), chap. 5, pp. 89-128.
6. T. Stachel, J. W. Harris, The origin of cratonic diamonds-Constraints from mineral inclusions. Ore Geol. Rev. 34, 5-32 (2008).
7. O. Navon, I. D. Hutcheon, G. R. Rossman, G. J. Wasserburg, Mantle-derived fluids in diamond micro-inclusions. Nature 335, 784-789 (1988).
8. O. Klein-BenDavid, A. M. Logvinova, M. Schrauder, Z. V. Spetius, Y. Weiss, E. H. Hauri, F. V. Kaminsky, N. V. Sobolev, O. Navon, High-Mg carbonatitic microinclusions in some Yakutian diamonds-A new type of diamond-forming fluid. Lithos 112, 648-659 (2009).
9. L. F. Dobrzhinetskaya, R. Wirth, H. W. Green II, A look inside of diamond-forming media in deep subduction zones. Proc. Natl. Acad. Sci. U.S.A. 104, 9128-9132 (2007).
10. E. L. Tomlinson, A. P. Jones, J. W. Harris, Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet. Sci. Lett. 250, 581-595 (2006).
11. Y. N. Pal'yanov, A. G. Sokol, Y. M. Borzdov, A. F. Khokhryakov, N. V. Sobolev, Diamond formation from mantle carbonate fluids. Nature 400, 417-418 (1999).
12. E. M. Smith, S. B. Shirey, F. Nestola, E. S. Bullock, J. Wang, S. H. Richardson, W. Wang, Large gem diamonds from metallic liquid in Earth's deep mantle. Science 354, 1403-1405 (2016).
13. K. V. Smit, S. B. Shirey, R. A. Stern, A. Steele, W. Wang, Diamond growth from C-H-N-O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ13C-δ15N-N content in Marange mixed-habit diamonds. Lithos 265, 68-81 (2016).
14. K. A. Smart, P. Cartigny, S. Tappe, H. O'Brien, S. Klemme, Lithospheric diamond formation as a consequence of methane-rich volatile flooding: An example from diamondiferous eclogite xenoliths of the Karelian craton (Finland). Geochim. Cosmochim. Acta 206, 312-342 (2017).
15. F. Piccoli, J. Hermann, T. Pettke, J. A. D. Connolly, E. D. Kempf, J. F. Vieira Duarte, Subducting serpentinites release reduced, not oxidized, aqueous fluids. Sci. Rep. 9, 19573 (2019).
16. H. Bureau, D. J. Frost, N. Bolfan-Casanova, C. Leroy, I. Esteve, P. Cordier, Diamond growth in mantle fluids. Lithos 265, 4-15 (2016).
17. D. A. Sverjensky, F. Huang, Diamond formation due to a pH drop during fluid-rock interactions. Nat. Commun. 6, 8702 (2015).
18. F. Kaminsky, Mineralogy of the lower mantle: A review of 'super-deep' mineral inclusions in diamond. Earth Sci. Rev. 110, 127-147 (2012).
19. Y. N. Palyanov, Y. V. Bataleva, A. G. Sokol, Y. M. Borzdov, I. N. Kupriyanov, N. V. Reutsky, N. V. Sobolev, Mantle-slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. U.S.A. 110, 20408-20413 (2013).
20. S. M. Dorfman, J. Badro, F. Nabiei, V. B. Prakapenka, M. Cantoni, P. Gillet, Carbonate stability in the reduced lower mantle. Earth Planet. Sci. Lett. 489, 84-91 (2018).
21. A. R. Thomson, M. J. Walter, S. C. Kohn, R. A. Brooker, Slab melting as a barrier to deep carbon subduction. Nature 529, 76-79 (2016).
22. T. Stachel, R. W. Luth, Diamond formation-Where, when and how? Lithos 220-223, 200-220 (2015).
23. R. Luth, Diamond formation during partial melting in the Earth's mantle. Abstr. Progr. - Geol. Soc. Amer. 49, 20-26 (2017).
24. K. V. Smit, T. Stachel, R. W. Luth, R. A. Stern, Evaluating mechanisms for eclogitic diamond growth: An example from Zimmi Neoproterozoic diamonds (West African craton). Chem. Geol. 520, 21-32 (2019).
25. M. Arima, Y. Kozai, M. Akaishi, Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions. Geology 30, 691-694 (2002).
26. J. Siebert, F. Guyot, V. Malavergne, Diamond formation in metal-carbonate interactions. Earth Planet. Sci. Lett. 229, 205-216 (2005).
27. S. Yamaoka, M. D. S. Kumar, H. Kanda, M. Akaishi, Formation of diamond from CaCO3 in a reduced C-O-H fluid at HP-HT. Diamond Relat. Mater. 11, 1496-1504 (2002).
28. Y. N. Pal'yanov, A. G. Sokol, Y. M. Borzdov, A. F. Khokhryakov, N. V. Sobolev, Diamond formation through carbonate-silicate interaction. Amer. Mineral. 87, 1009-1013 (2002).
29. Y. N. Palyanov, Y. M. Borzdov, Y. V. Bataleva, A. G. Sokol, G. A. Palyanova, I. N. Kupriyanov, Reducing role of sulfides and diamond formation in the Earth's mantle. Earth Planet. Sci. Lett. 260, 242-256 (2007).
30. S. C. Gunn, R. W. Luth, Carbonate reduction by Fe-S-O melts at high pressure and high temperature. Am. Mineral. 91, 1110-1116 (2006).
31. T. Yoshino, B. Gruber, C. Reinier, Effects of pressure and water on electrical conductivity of carbonate melt with implications for conductivity anomaly in continental mantle lithosphere. Phys. Earth Planet. Inter. 281, 8-16 (2018).
32. S. Ono, K. Mibe, Influence of pressure and temperature on the electrical conductivity of dolomite. Phys Chem Minerals 42, 773-779 (2015).
33. A. Pommier, E. J. Garnero, Petrology-based modeling of mantle melt electrical conductivity and joint interpretation of electromagnetic and seismic results. J. Geophys. Res. Solid Earth 119, 4001-4016 (2014).
34. A. E. Ringwood, On the chemical evolution and densities of the planets. Geochim. Cosmochim. Acta 15, 257-283 (1959).
35. F. Gaillard, M. Malki, G. Iacono-Marziano, M. Pichavant, B. Scaillet, Carbonatite melts and electrical conductivity in the asthenosphere. Science 322, 1363-1365 (2008).
36. A. Kavner, D. Walker, Core/mantle-like interactions in an electric field. Earth Planet. Sci. Lett. 248, 316-329 (2006).
37. D. C. Tozer, in Physics and Chemistry of the Earth, K. Rankama, S. K. Runcorn, Eds. (Pergamon Press, 1959) vol. 3, pp. 414-436.
38. T. Rikitate, Electromagnetism and the Earth's Interior (Elsevier, Amsterdam, 1966).
39. D. J. Frost, C. A. McCammon, The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36, 389-420 (2008).
40. V. Stagno, Y. Fei, The redox boundaries of Earth's interior. Elements 16, 167-172 (2020).
41. T. Chacko, D. R. Cole, J. Horita, Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev. Miner. Geochem. 43, 1-81 (2001).
42. Y. Moussallam, P. Florian, D. Corradini, Y. Morizet, N. Sator, R. Vuilleumier, B. Guillot, G. Lacono-Marziano, B. C. Schmidt, F. Gaillard, The molecular structure of melts along the carbonatite-kimberlite-basalt compositional joint: CO2 and polymerisation. Earth Planet. Sci. Lett. 434, 129-140 (2016).
43. B. Mysen, Redox-controlled mechanisms of C and H isotope fractionation between silicate melt and COH fluid in the Earth's interior. Progr. Earth Planet. Sci. 5, 46 (2018).
44. M. D. Ingram, B. Baron, G. J. Janz, The electrolytic deposition of carbon from fused carbonates. Electroch. Acta 11, 1629-1639 (1966).
45. H. V. Ijije, R. C. Lawrence, G. Z. Chen, Carbon electrode position in molten salts: Electrode reactions and applications. RSC Adv. 4, 35808-35817 (2014).
46. P. J. Wyllie, W. L. Huang, High CO2 solubilities in mantle magmas. Geology 4, 21-24 (1976).
47. G. P. Brey, I. D. Ryabchikov, Carbon dioxide in strongly silica undersaturated melts and origin of kimberlite magmas. Neus. Jb. Miner. Mh. 10, 449-463 (1994).
48. Y. N. Palyanov, I. N. Kupriyanov, A. G. Sokol, Y. M. Borzdov, A. F. Khokhryakov, Effect of CO2 on crystallization and properties of diamond from ultra-alkaline carbonate melt. Lithos 265, 339-350 (2016).
49. Y. N. Pal'yanov, A. G. Sokol, A. A. Tomilenko, N. V. Sobolev, Conditions of diamond formation through carbonate-silicate interaction. Eur. J. Mineral. 17, 207-214 (2005).
50. T. Plank, C. E. Manning, Subducting carbon. Nature 574, 343-352 (2019).
51. R. Dasgupta, M. M. Hirschmann, The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 298, 1-13 (2010).
52. A. Kavner, A. Shahar, F. Bonet, J. Simon, E. Young, The isotopic effects of electron transfer: An explanation for Fe isotope fractionation in nature. Geochim. Cosmochim. Acta 69, 2971-2979 (2005).
53. V. Reutsky, Y. Borzdov, Y. Palyanov, A. Sokol, O. Izokh, Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions. Contrib. Mineral. Petrol. 170, 41 (2015).
54. A. Kavner, D. Walker, S. Sutton, M. Newville, Externally-driven charge transfer in silicates at high pressure and temperature: A XANES study. Earth Planet. Sci. Lett. 256, 314-327 (2007).
55. B. Debret, D. A. Sverjensky, Highly oxidising fluids generated during serpentinite breakdown in subduction zones. Sci. Rep. 7, 10351 (2017).
56. Y. Palyanov, I. Kupriyanov, A. Khokhryakov, V. Ralchenko, Crystal Growth of Diamond, in Handbook of Crystal Growth, T. Nishinaga, P. Rudolph, Eds. (Elsevier, 2015), vol. II, chap.17, pp. 671-713.
57. Y. N. Pal'yanov, A. G. Sokol, M. Borzdov, A. F. Khokhryakov, Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: An experimental study. Lithos 60, 145-159 (2002).
58. A. G. Sokol, Y. M. Borzdov, Y. N. Palyanov, A. F. Khokhryakov, High-temperature calibration of a multianvil high pressure apparatus. High Press. Res. 35, 139-147 (2015).
59. V. N. Reutsky, Y. M. Borzdov, Y. N. Palyanov, Effect of diamond growth rate on carbon isotope fractionation in Fe-Ni-C system. Diamond Relat. Mater. 21, 7-10 (2012).
60. V. N. Reutsky, B. Harte, Y. M. Borzdov, Y. N. Palyanov, Monitoring diamond crystal growth, a combined experimental and SIMS study. Eur. J. Mineral. 20, 365-374 (2008).
61. V. N. Reutsky, P. M. Kowalski, Y. N. Palyanov, M. Wiedenbeck, Experimental and theoretical evidence for surface-induced carbon and nitrogen fractionation during diamond crystallization at high temperatures and high pressures. Crystals 7, 190 (2017).