Инд. авторы: Perri A.R., Mitchell K.J., Mouton A., Alvarez-Carretero S., Hulme-Beaman A., Haile J., Jamieson A., Meachen J., Lin A.D.T., Schubert B.W., Ameen C., Antipina E.E., Bover P., Brace S., Carmagnini A., Caroe C., Castruita J.S.A., Chatters J.C., Dobney K., Evin A., Gaubert P., Gopalakrishnan S., Gower G., Heiniger H., Helgen K.M., Kapp J., Kosintsev P.A., Linderholm A., Ozga A.T., Presslee S., Salis A.T., Saremi N.F., Shew C., Skerry K., Taranenko D.E., Thompson M., Sablin M.V., Kuzmin Y.V., Collins M.J., Sinding M.H.S., Gilbert M.T.P., Stone A.C., Shapiro B., Wayne R.K., Larson G., Cooper A., Frantz L.A.F.
Заглавие: Dire wolves were the last of an ancient New World canid lineage
Библ. ссылка: Perri A.R., Mitchell K.J., Mouton A., Alvarez-Carretero S., Hulme-Beaman A., Haile J., Jamieson A., Meachen J., Lin A.D.T., Schubert B.W., Ameen C., Antipina E.E., Bover P., Brace S., Carmagnini A., Caroe C., Castruita J.S.A., Chatters J.C., Dobney K., Evin A., Gaubert P., Gopalakrishnan S., Gower G., Heiniger H., Helgen K.M., Kapp J., Kosintsev P.A., Linderholm A., Ozga A.T., Presslee S., Salis A.T., Saremi N.F., Shew C., Skerry K., Taranenko D.E., Thompson M., Sablin M.V., Kuzmin Y.V., Collins M.J., Sinding M.H.S., Gilbert M.T.P., Stone A.C., Shapiro B., Wayne R.K., Larson G., Cooper A., Frantz L.A.F. Dire wolves were the last of an ancient New World canid lineage // Nature. - ISSN 0028-0836. - EISSN 1476-4687.
Идентиф-ры: DOI: 10.1038/s41586-020-03082-x; РИНЦ: 44970311; PubMed: 33442059; WoS: 000607492400001; WoS: 000626921700015;
Реферат: eng: Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America(1), yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae(2,3), there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently. Dire wolves split from living canids around 5.7 million years ago and originated in the New World isolated from the ancestors of grey wolves and coyotes, which evolved in Eurasia and colonized North America only relatively recently.
Ключевые слова: REVEALS; ADMIXTURE; CARNIVORA; MAMMALIA; WOLF; NORTH; EVOLUTIONARY HISTORY; MEGAFAUNAL EXTINCTIONS; PHYLOGENY; ORIGIN;
Цитирование: 1. Dundas, R. G. Quaternary records of the dire wolf, Canis dirus, in North and South America. Boreas 28, 375–385 (1999). DOI: 10.1080/030094899422109
2. vonHoldt, B. M. et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2, e1501714 (2016). DOI: 10.1126/sciadv.1501714
3. Gopalakrishnan, S. et al. Interspecific gene flow shaped the evolution of the genus Canis. Curr. Biol. 28, 3441–3449 (2018). DOI: 10.1016/j.cub.2018.08.041
4. Meachen, J. A., Brannick, A. L. & Fry, T. J. Extinct Beringian wolf morphotype found in the continental U.S. has implications for wolf migration and evolution. Ecol. Evol. 6, 3430–3438 (2016). DOI: 10.1002/ece3.2141
5. Leonard, J. A. et al. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Curr. Biol. 17, 1146–1150 (2007). DOI: 10.1016/j.cub.2007.05.072
6. Kurtén, B. & Anderson, E. Pleistocene Mammals of North America (Columbia Univ. Press, 1980).
7. Tedford, R. H., Wang, X. & Taylor, B. E. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bull. Am. Nat. Hist. 325, 1–218 (2009). DOI: 10.1206/574.1
8. Prevosti, F. J. Phylogeny of the large extinct South American Canids (Mammalia, Carnivora, Canidae) using a ‘total evidence' approach. Cladistics 26, 456–481 (2010). DOI: 10.1111/j.1096-0031.2009.00298.x
9. Zrzavý, J., Duda, P., Robovský, J., Okřinová, I. & Pavelková Řičánková, V. Phylogeny of the Caninae (Carnivora): combining morphology, behaviour, genes and fossils. Zool. Scr. 47, 373–389 (2018). DOI: 10.1111/zsc.12293
10. Álvarez-Carretero, S., Goswami, A., Yang, Z. & Dos Reis, M. Bayesian estimation of species divergence times using correlated quantitative characters. Syst. Biol. 68, 967–986 (2019). DOI: 10.1093/sysbio/syz015
11. Goulet, G. D. Comparison of temporal and geographical skull variation among Nearctic modern, Holocene and Late Pleistocene gray wolves (Canis lupus) (and selected Canis). (1993).
12. Graham, R. W. & Mead, J. I. in North America and Adjacent Oceans During the Last Deglaciation (eds Ruddiman, Q. F. & Wright, H. E. Jr.) 371–402 (Geological Society of America, 1987).
13. Barnosky, A. D. in Mass Extinctions: Processes and Evidence (ed. Donovan, S. K.) 235–254 (Belhaven, 1989).
14. DeSantis, L. R. G. et al. Causes and consequences of pleistocene megafaunal extinctions as revealed from Rancho La Brea mammals. Curr. Biol. 29, 2488–2495 (2019). DOI: 10.1016/j.cub.2019.06.059
15. Merriam, J. C. Note on the systematic position of the wolves of the Canis dirus group. Bull. Dept. Geol. Univ. California 10, 531–533 (1918).
16. Buckley, M., Harvey, V. L. & Chamberlain, A. T. Species identification and decay assessment of Late Pleistocene fragmentary vertebrate remains from Pin Hole Cave (Creswell Crags, UK) using collagen fingerprinting. Boreas 46, 402–411 (2017). DOI: 10.1111/bor.12225
17. Koepfli, K.-P. et al. Genome-wide evidence reveals that African and Eurasian golden jackals are distinct species. Curr. Biol. 25, 2158–2165 (2015). DOI: 10.1016/j.cub.2015.06.060
18. Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A. & RoyChoudhury, A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29, 1917–1932 (2012). DOI: 10.1093/molbev/mss086
19. Yang, Z. The BPP program for species tree estimation and species delimitation. Curr. Zool. 61, 854–865 (2015). DOI: 10.1093/czoolo/61.5.854
20. Geraads, D. A revision of the fossil Canidae (Mammalia) of north-western Africa. Palaeontology 54, 429–446 (2011). DOI: 10.1111/j.1475-4983.2011.01039.x
21. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). DOI: 10.1093/molbev/msm088
22. vonHoldt, B. M. et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 21, 1294–1305 (2011). DOI: 10.1101/gr.116301.110
23. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012). DOI: 10.1534/genetics.112.145037
24. Sinding, M. S. et al. Arctic-adapted dogs emerged at the Pleistocene–Holocene transition. Science 368, 1495–1499 (2020). DOI: 10.1126/science.aaz8599
25. Ní Leathlobhair, M. et al. The evolutionary history of dogs in the Americas. Science 361, 81–85 (2018). DOI: 10.1126/science.aao4776
26. Frantz, L. A. F. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016). DOI: 10.1126/science.aaf3161
27. Skoglund, P., Ersmark, E., Palkopoulou, E. & Dalén, L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 25, 1515–1519 (2015). DOI: 10.1016/j.cub.2015.04.019
28. Nowak, R. M. North American quaternary Canis. Monograph of the Museum of Natural History (Univ. Kansas, 1979).
29. Nowak, R. M. in Wolves: Behavior, Ecology, and Conservation (eds. Mech, L. D. & Boitani, L.) 239–258 (Univ. Chicago Press, 2003).
30. Sotnikova, M. & Rook, L. Dispersal of the Canini (Mammalia, Canidae: Caninae) across Eurasia during the Late Miocene to Early Pleistocene. Quat. Int. 212, 86–97 (2010). DOI: 10.1016/j.quaint.2009.06.008
31. Saunders, J. J., Styles, B. W. & Baryshnikov, G. F. Quaternary Paleozoology in the Northern Hemisphere (Illinois State Museum, 1998).
32. Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015). DOI: 10.1126/science.aac4315
33. Schubert, B. W. Late Quaternary chronology and extinction of North American giant short-faced bears (Arctodus simus). Quat. Int. 217, 188–194 (2010). DOI: 10.1016/j.quaint.2009.11.010
34. Schweizer, R. M. et al. Natural selection and origin of a melanistic allele in North American gray wolves. Mol. Biol. Evol. 35, 1190–1209 (2018). DOI: 10.1093/molbev/msy031
35. Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science 323, 1339–1343 (2009). DOI: 10.1126/science.1165448
36. IUCN. The IUCN Red List of Threatened Species version 2019-2 https://www.iucnredlist.org (2019).
37. R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).