Инд. авторы: Palyanov Y.N., Borzdov Y.M., Kupriyanov I.N., Bataleva Y.V., Nechaev D.V.
Заглавие: Effect of Oxygen on Diamond Crystallization in Metal-Carbon Systems
Библ. ссылка: Palyanov Y.N., Borzdov Y.M., Kupriyanov I.N., Bataleva Y.V., Nechaev D.V. Effect of Oxygen on Diamond Crystallization in Metal-Carbon Systems // ACS OMEGA. - 2020. - Vol.5. - Iss. 29. - P.18376-18383. - ISSN 2470-1343.
Идентиф-ры: DOI: 10.1021/acsomega.0c02130; РИНЦ: 45436395; PubMed: 32743213; WoS: 000557750100059;
Реферат: eng: In this article, we report the influence of oxygen concentration in the transition-metal solvent-catalyst on the crystallization processes, morphology, and defect-and-impurity content of diamond crystals. In a series of experiments, the concentration of oxygen (C-o) in the growth system was varied by adding Fe2O3 to the charge, and the other parameters and conditions of the growth were constant: Ni7Fe3 solvent-catalyst, P = 6.0 GPa, T = 1400 degrees C, and duration of 40 h. It is found that on increasing C-o in the growth system from 0 to 10 wt %, the crystallization of diamond proceeds through the following stages: single crystal -> block crystal -> spontaneous crystals -> aggregate of block crystals and twin crystals. At C-o >= S wt %, diamond crystallizes jointly with wustite (FeO) and metastable graphite. The oxygen solubility in the iron-nickel melt is estimated at about 2 wt %. With increasing oxygen content in the system, the range of nitrogen concentrations in diamonds crystallized in one experiment significantly broadens with the maximum nitrogen concentrations being increased from 200-250 ppm in the experiment without O additives to 1100-1200 ppm in the experiment with 10 wt % O added. The established joint growth of diamond and wustite suggests possible crystallization of natural diamonds in the Fe-Ni-O-C system over a wide range of oxygen concentrations up to 10 wt %.
Ключевые слова: FUGACITY; IRON; NITROGEN; DEEP MANTLE; INFRARED-ABSORPTION; LOWER-MANTLE; CRYSTAL-GROWTH; MINERAL INCLUSIONS; OXIDATION-STATE; HYDROGEN;
Издано: 2020
Физ. хар-ка: с.18376-18383
Цитирование: 1. Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H., Jr. Man-made diamonds. Nature 1955, 176, 51-54, 10.1038/176051a0
2. Strong, H. M.; Hanneman, R. E. Crystallization of diamond and graphite. J. Phys. Chem. A 1967, 46, 3668-3676, 10.1063/1.1841272
3. Wentorf, R. H. Some studies of diamond growth rates. J. Phys. Chem. B 1971, 75, 1833-1837, 10.1021/j100681a013
4. Wedlake, R. J. Technology of Diamond Growth. In The Properties of Diamond, Field, J. E., Ed.; Academic Press: London, UK, 1979; pp 501-535.
5. Palyanov, Y.; Kupriyanov, I.; Khokhryakov, A.; Ralchenko, V. Crystal Growth of Diamond. In Handbook of Crystal Growth, Nishinaga, T.; Rudolph, P., Eds.; Elsevier: 2015; Vol. II, pp. 671-713. (Chapter 17).
6. D'Haenens-Johansson, U. F. S.; Katrusha, A.; Moe, K. S.; Johnson, P.; Wang, W. Large colorless HPHT-grown synthetic gem diamonds from New Diamond Technology, Russia. Gems Gemol. 2015, 51, 260-279, 10.5741/GEMS.51.3.260
7. Palyanov, Y. N.; Borzdov, Y. M.; Khokhryakov, A. F.; Kupriyanov, I. N.; Sokol, A. G. Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 2010, 10, 3169-3175, 10.1021/cg100322p
8. Zhang, Y.; Zang, C.; Ma, H.; Liang, Z.; Zhou, L.; Li, S.; Jia, X. HPHT synthesis of large single crystal diamond doped with high nitrogen concentration. Diamond Relat. Mater. 2008, 17, 209-211, 10.1016/j.diamond.2007.12.018
9. Liu, X.; Jia, X.; Zhang, Z.; Li, Y.; Hu, M.; Zhou, Z.; Ma, H. A. Crystal growth and characterization of diamond from carbonyl iron catalyst under high pressure and high temperature conditions. Cryst. Growth Des. 2011, 11, 3844-3849, 10.1021/cg200387n
10. Palyanov, Y. N.; Borzdov, Y. M.; Kupriyanov, I. N.; Khokhryakov, A. F. Effect of H2O on diamond crystal growth in metal-carbon systems. Cryst. Growth Des. 2012, 12, 5571-5578, 10.1021/cg301111g
11. Palyanov, Y. N.; Khokhryakov, A. F.; Borzdov, Y. M.; Kupriyanov, I. N. Diamond growth and morphology under the influence of impurity adsorption. Cryst. Growth Des. 2013, 13, 5411-5419, 10.1021/cg4013476
12. Fang, C.; Zhang, Y.; Shen, W.; Sun, S.; Zhang, Z.; Xue, L.; Jia, X. Synthesis and characterization of HPHT large single-crystal diamonds under the simultaneous influence of oxygen and hydrogen. CrystEngComm 2017, 19, 5727-5734, 10.1039/C7CE01349C
13. Huang, G.; Zheng, Y.; Peng, L.; Li, Z.; Jia, X.; Ma, H. Crystallization of HPHT diamond crystals in a floatage system under the influence of nitrogen and hydrogen simultaneously. CrystEngComm. 2015, 17, 6504-6511, 10.1039/C5CE01225B
14. Sun, S.; Jia, X.; Yan, B.; Wang, F.; Li, Y.; Chen, N.; Ma, H. A. Synergistic effect of nitrogen and hydrogen on diamond crystal growth at high pressure and high temperature. Diamond Relat. Mater. 2014, 42, 21-27, 10.1016/j.diamond.2013.11.013
15. Luth, R. W. Carbon and Carbonates in the Mantle. In Mantle Petrology, Fei, Y.; Bertka, C. M.; Mysen, B. O., Eds.; Geochemical Society: St. Louis, 1999; pp 297-316.
16. Shirey, S. B.; Cartigny, P.; Frost, D. J.; Nestola, F.; Nimis, P.; Pearson, D. G.; Sobolev, N. V.; Walter, M. J. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 2013, 75, 355-421, 10.2138/rmg.2013.75.12
17. Shirey, S.; Smit, K.; Pearson, D. G.; Walter, M.; Aulbach, S.; Brenker, F.; Bureau, H.; Burnham, A.; Cartigny, P.; Chacko, T.; Frost, D.; Hauri, E.; Jacob, D.; Jacobsen, S.; Kohn, S.; Luth, R.; Mikhail, S.; Navon, O.; Nestola, F.; Nimis, P.; Palot, M.; Smith, E.; Stachel, T.; Stagno, V.; Steele, A.; Stern, R.; Thomassot, E.; Thomson, A.; Weiss, Y. Diamonds and the Mantle Geodynamics of Carbon. In Deep Carbon: Past to Present, Orcutt, B.; Daniel, I.; Dasgupta, R., Eds.; Cambridge University Press: Cambridge, 2019; pp 89-128.
18. Woodland, A. B.; Koch, M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal Craton, Southern Africa. Earth Planet. Sci. Lett. 2003, 214, 295-310, 10.1016/S0012-821X(03)00379-0
19. McCammon, C.; Kopylova, M. G. A Redox profile of the slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Mineral. Petrol. 2004, 148, 55-68, 10.1007/s00410-004-0583-1
20. Stagno, V.; Ojwang, D. O.; McCammon, C. A.; Frost, D. J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 2013, 493, 84-88, 10.1038/nature11679
21. Yaxley, G. M.; Berry, A. J.; Kamenetsky, V. S.; Woodland, A. B.; Golovin, A. V. An oxygen fugacity profile through the Siberian craton: Fe K-edge XANES determinations of Fe3+/sigma Fe in garnets in peridotite xenoliths from the Udachnaya East Kimberlite. Lithos 2012, 140-141, 142-151, 10.1016/j.lithos.2012.01.016
22. Stagno, V. Carbon, carbides, carbonates and carbonatitic melts in the Earth's interior. J. Geol. Soc. 2019, 176, 375-387, 10.1144/jgs2018-095
23. Palyanov, Y. N.; Bataleva, Y. V.; Sokol, A. G.; Borzdov, Y. M.; Kupriyanov, I. N.; Reutsky, N. V.; Sobolev, N. V. Mantle-slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20408-20413, 10.1073/pnas.1313340110
24. Rohrbach, A.; Ballhaus, C.; Golla-Schindler, U.; Ulmer, P.; Kamenetsky, V. S.; Kuzmin, D. V. Metal saturation in the upper mantle. Nature 2007, 449, 456-458, 10.1038/nature06183
25. Rohrbach, A.; Schmidt, M. W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 2011, 472, 209-212, 10.1038/nature09899
26. Meyer, H. O. A.; Svicero, D. P. Mineral inclusions in Brazilian diamonds. Phys. Chem. Earth 1975, 9, 785-795, 10.1016/0079-1946(75)90051-8
27. Sobolev, N. V.; Efimova, E. S.; Pospelova, L. N. Native iron in Yakutian diamonds and its paragenesis. Soviet Geol. Geophys. 1981, 22, 18-21
28. Bulanova, G. P. The formation of diamond. J. Geochem. Explor. 1995, 53, 1-23, 10.1016/0375-6742(94)00016-5
29. Stachel, T.; Harris, J. W.; Brey, G. P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Mineral. Petrol. 1998, 132, 34-47, 10.1007/s004100050403
30. Smith, E. M.; Kopylova, M. G. Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle. Canad. J. Earth Sci. 2014, 51, 510-516, 10.1139/cjes-2013-0218
31. Smith, E. M.; Shirey, S. B.; Nestola, F.; Bullock, E. S.; Wang, J.; Richardson, S. H.; Wang, W. Large gem diamonds from metallic liquid in Earth's deep mantle. Science 2016, 354, 1403-1405, 10.1126/science.aal1303
32. Shatsky, V. S.; Ragozin, A. L.; Logvinova, A. M.; Wirth, R.; Sobolev, N. V. et al. Diamond-rich placer deposits from iron-saturated mantle beneath the northeastern margin of the Siberian Craton. Lithos 2020, 364-365, 105514 10.1016/j.lithos.2020.105514
33. Evans, T. Aggregation of nitrogen in diamond. In The Properties of Natural and Synthetic Diamond, Field, J. E., Ed.; Academic Press: London, 1992; pp 259-290.
34. Burns, R. C.; Hansen, J. O.; Spits, R. A.; Sibanda, M.; Welbourn, C. M.; Welch, D. L. Growth of high purity large synthetic diamond crystals. Diamond Relat. Mater. 1999, 8, 1433-1437, 10.1016/S0925-9635(99)00042-4
35. Wirth, R.; Kaminsky, F.; Matsyuk, S.; Schreiber, A. Unusual micro-and nano-inclusions in diamonds from the Juina Area, Brazil. Earth Planet. Sci. Lett. 2009, 286, 292-303, 10.1016/j.epsl.2009.06.043
36. Kaminsky, F. V.; Wirth, R. Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can. Mineral. 2011, 49, 555-572, 10.3749/canmin.49.2.555
37. Kaminsky, F. Mineralogy of the lower mantle: A review of â&tild;super-deep' mineral inclusions in diamond. Earth Sci. Rev. 2012, 110, 127-147, 10.1016/j.earscirev.2011.10.005
38. McCammon, C. Deep diamond mysteries. Science 2001, 293, 813-814, 10.1126/science.1063295
39. McCammon, C. A.; Stachel, T.; Harris, J. W. Iron oxidation state in lower mantle mineral assemblages: II. Inclusions in diamonds from Kankan, Guinea. Earth Planet. Sci. Lett. 2004, 222, 423-434, 10.1016/j.epsl.2004.03.019
40. Harte, B. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral. Mag. 2010, 74, 189-215, 10.1180/minmag.2010.074.2.189
41. Fang, S.; Ma, H.; Cai, Z.; Wang, C.; Fang, C.; Lu, Z.; Wang, Y.; Chen, L.; Jia, X. Study on the characteristics of Ib diamond crystals synthesized with Fe3O4 doped in an Fe-Ni-C system. CrystEngComm 2020, 22, 3854-3862, 10.1039/D0CE00559B
42. Kiflawi, I.; Mayer, A. E.; Spear, P. M.; van Wyk, J. A.; Woods, G. S. Infrared absorption by the single nitrogen and A defect centres in diamond. Philos. Mag. B 1994, 69, 1141-1147, 10.1080/01418639408240184
43. Boyd, S. R.; Kiflawi, I.; Woods, G. S. The relationship between infrared absorption and the A defect concentration in diamond. Philos. Mag. B 1994, 69, 1149-1153, 10.1080/01418639408240185