Инд. авторы: Bergström A., Frantz L., Schmidt R., Ersmark E., Lebrasseur O., Girdland-Flink L., Lin A.T., Storå J., Sjögren K.-G., Anthony D., Antipina E., Amiri S., Bar-Oz G., Bazaliiskii V.I., Bulatović J., Bauthorn D., Carmagnini A., Davy T., Fedorov S., Fiore I., Fulton D., Germonpré M., Haile J., Irving-Pease E.K., Jamieson A., Janssens L., Kirillova I., Horwitz L.K., Kuzmanovic-Cvetković J., Kuzmin Y.V., Losey R.J., Dizdar D.L., Mashkour M., Novak M., Onar V., Orton D., Pasarić M., Radivojević M., Rajković D., Roberts B., Ryan H., Sablin M., Shidlovskiy F., Stojanović I., Tagliacozzo A., Trantalidou K., Ullén I., Villaluenga A., Wapnish P., Dobney K., Götherström A., Linderholm A., Dalén L., Pinhasi R., Larson G., Skoglund P.
Заглавие: Origins and genetic legacy of prehistoric dogs
Библ. ссылка: Bergström A., Frantz L., Schmidt R., Ersmark E., Lebrasseur O., Girdland-Flink L., Lin A.T., Storå J., Sjögren K.-G., Anthony D., Antipina E., Amiri S., Bar-Oz G., Bazaliiskii V.I., Bulatović J., Brown D., Carmagnini A., Davy T., Fedorov S., Fiore I., Fulton D., Germonpré M., Haile J., Irving-Pease E.K., Jamieson A., Janssens L., Kirillova I., Horwitz L.K., Kuzmanovic-Cvetković J., Kuzmin Y.V., Losey R.J., Dizdar D.L., Mashkour M., Novak M., Onar V., Orton D., Pasarić M., Radivojević M., Rajković D., Roberts B., Ryan H., Sablin M., Shidlovskiy F., Stojanović I., Tagliacozzo A., Trantalidou K., Ullén I., Villaluenga A., Wapnish P., Dobney K., Götherström A., Linderholm A., Dalén L., Pinhasi R., Larson G., Skoglund P. Origins and genetic legacy of prehistoric dogs // Science (New York, N.Y.). - 2020. - Vol.370. - Iss. 6516. - P.557-564. - ISSN 1095-9203.
Идентиф-ры: DOI: 10.1126/science.aba9572; РИНЦ: 45173206; PubMed: 33122379; SCOPUS: 2-s2.0-85095389553; WoS: 000583031800042;
Реферат: eng: Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Ключевые слова: wolf; turnover rate; steppe; Paleolithic; nonhuman; Neolithic; human genome; gene flow; Europe; domestication; domestic animal; dog; article; animal experiment; Africa;
Издано: 2020
Физ. хар-ка: с.557-564
Цитирование: 1. C. Vilà et al., Science 276, 1687–1689 (1997).
2. P. Savolainen, Y. P. Zhang, J. Luo, J. Lundeberg, T. Leitner, Science 298, 1610–1613 (2002).
3. M. Germonpré et al., J. Archaeol. Sci. 36, 473–490 (2009).
4. P. Skoglund, E. Ersmark, E. Palkopoulou, L. Dalén, Curr. Biol. 25, 1515–1519 (2015).
5. A. H. Freedman et al., PLOS Genet. 10, e1004016 (2014).
6. E. Axelsson et al., Nature 495, 360–364 (2013).
7. P. Skoglund, A. Götherström, M. Jakobsson, Mol. Biol. Evol. 28, 1505–1517 (2011).
8. G.-D. Wang et al., Cell Res. 26, 21–33 (2016).
9. L. A. F. Frantz et al., Science 352, 1228–1231 (2016).
10. L. M. Shannon et al., Proc. Natl. Acad. Sci. U.S.A. 112, 13639–13644 (2015).
11. O. Thalmann et al., Science 342, 871–874 (2013).
12. B. M. Vonholdt et al., Nature 464, 898–902 (2010).
13. J.-F. Pang et al., Mol. Biol. Evol. 26, 2849–2864 (2009).
14. L. R. Botigué et al., Nat. Commun. 8, 16082 (2017).
15. D. F. Morey, Am. Sci. 82, 336–347 (1994).
16. J. Clutton-Brock, Science 197, 1340–1342 (1977). 17. S. J. M. Davis, F. R. Valla, Nature 276, 608–610 (1978).
17. M. Sablin, G. Khlopachev, Curr. Anthropol. 43, 795–799 (2002).
18. H. G. Parker et al., Science 304, 1160–1164 (2004).
19. H. G. Parker et al., Cell Rep. 19, 697–708 (2017).
20. M. Ní Leathlobhair et al., Science 361, 81–85 (2018).
21. B. van Asch et al., Proc. Biol. Sci. 280, 1142 (2013).
22. J. A. Leonard et al., Science 298, 1613–1616 (2002).
23. S. Castroviejo-Fisher, P. Skoglund, R. Valadez, C. Vilà, J. A. Leonard, BMC Evol. Biol. 11, 73 (2011).
24. K. Greig et al., Sci. Rep. 8, 9130 (2018).
25. P. Savolainen, T. Leitner, A. N. Wilton, E. Matisoo-Smith, J. Lundeberg, Proc. Natl. Acad. Sci. U.S.A. 101, 12387–12390 (2004).
26. M. Ollivier et al., Biol. Lett. 14, 20180286 (2018).
27. C. Ameen et al., Proc. R. Soc. B Biol. Sci. 286, 1929 (2019).
28. H. Malmström et al., BMC Evol. Biol. 8, 71 (2008).
29. Materials and methods are available as supplementary materials.
30. N. D. Ovodov et al., PLOS ONE 6, e22821 (2011).
31. Y.-H. Liu et al., Mol. Biol. Evol. 35, 287–298 (2018). 33. B. Miao, Z. Wang, Y. Li, Mol. Biol. Evol. 34, 734–743 (2017).
32. B. vonHoldt, Z. Fan, D. Ortega-Del Vecchyo, R. K. Wayne, PeerJ 5, e3522 (2017).
33. L. A. F. Frantz et al., Proc. Natl. Acad. Sci. U.S.A. 116, 17231–17238 (2019).
34. K. G. Daly et al., Science 361, 85–88 (2018).
35. A. Fages et al., Cell 177, 1419–1435.e31 (2019).
36. M. Barbato et al., Sci. Rep. 7, 7623 (2017).
37. S. D. E. Park et al., Genome Biol. 16, 234 (2015).
38. M. P. Verdugo et al., Science 365, 173–176 (2019).
39. I. Lazaridis et al., Nature 536, 419–424 (2016).
40. F. Broushaki et al., Science 353, 499–503 (2016).
41. I. Lazaridis et al., Nature 513, 409–413 (2014).
42. L. M. Cassidy et al., Proc. Natl. Acad. Sci. U.S.A. 113, 368–373 (2016).
43. W. Haak et al., Nature 522, 207–211 (2015).
44. M. E. Allentoft et al., Nature 522, 167–172 (2015).
45. Q. Fu et al., Proc. Natl. Acad. Sci. U.S.A. 110, 2223–2227 (2013).
46. L. Janssens et al., J. Archaeol. Sci. 92, 126–138 (2018).
47. A. Perri, J. Archaeol. Sci. 68, 1–4 (2016).
48. D. F. Morey, J. Archaeol. Sci. 52, 300–307 (2014).
49. M. Raghavan et al., Nature 505, 87–91 (2014).
50. P. B. Damgaard et al., Nature 557, 369–374 (2018).
51. P. Skoglund et al., Science 336, 466–469 (2012).
52. P. Skoglund et al., Science 344, 747–750 (2014).
53. M. Arendt, K. M. Cairns, J. W. O. Ballard, P. Savolainen, E. Axelsson, Heredity 117, 301–306 (2016).
54. M. Ollivier et al., R. Soc. Open Sci. 3, 160449 (2016).
55. G. H. Perry et al., Nat. Genet. 39, 1256–1260 (2007).
56. S. Mathieson, I. Mathieson, Mol. Biol. Evol. 35, 2957–2970 (2018).
57. P. Skoglund et al., Cell 171, 59–71.e21 (2017).
58. M. Feldman et al., Sci. Adv. 5, eaax0061 (2019).
59. M. Zhang et al., Mol. Biol. Evol. 37, 1462–1469 (2020).