Инд. авторы: Sokol E.V., Kokh S.N., Kozmenko O.A., Nekipelova A.V., Rudmin M., Khvorov P.V., Artemyev D.A.
Заглавие: Geochemistry and mineralogy of rare earth elements in high-phosphorus ooidal ironstones: A case study of the Kamysh-Burun deposit (Azov–Black Sea iron Province)
Библ. ссылка: Sokol E.V., Kokh S.N., Kozmenko O.A., Nekipelova A.V., Rudmin M., Khvorov P.V., Artemyev D.A. Geochemistry and mineralogy of rare earth elements in high-phosphorus ooidal ironstones: A case study of the Kamysh-Burun deposit (Azov–Black Sea iron Province) // Ore Geology Reviews. - 2020. - Vol.127. - Art.103827. - ISSN 0169-1368.
Идентиф-ры: DOI: 10.1016/j.oregeorev.2020.103827; РИНЦ: 45249706; SCOPUS: 2-s2.0-85092730484; WoS: 000598902700002;
Реферат: eng: This study is aimed at characterizing the distribution and speciation of the rare earth elements and yttrium (REE + Y) in ooidal ironstones from the Kamysh-Burun deposit (Kerch Peninsula), with implications for the depositional environments and contributions of different REE + Y carriers to the ore budget. The Lower Pliocene ooidal ironstone sequence of the so-called Kerch ores, up to 15 m thick, occupies an area of 28 km2. The ore sequence lies between Miocene – Lower Pliocene shell limestones and Upper Pliocene – Pleistocene sandy and clayey sediments and consists of horizontal ooidal ironstone beds composed mainly of goethite and X-ray amorphous Fe3+-(oxy)hydroxides intercalated with siderite and/or rhodochrosite beds. Iron is a main component in ooidal ironstones (50.03–66.19 wt% Fe2O3 and ≤1.61 wt% FeO), as well as in fresh carbonate ores (~34 wt% FeO and ≤14.70 wt% Fe2O3). The Kerch ores contain up to 4.59 wt% P2O5 and show significant positive correlation between P and Fe (r = 0.75). The bulk ore samples and their coarse (1–10 mm) fractions are goethite-dominated and have similar phase, major- and trace-element, and REE compositions. The fine (<1 mm) fractions are poorer in goethite and P2O5 but enriched in SiO2, Al2O3, Ti, Zr, Y, and Th due to greater percentages of Fe-saponite and fine detrital matter (including very scarce rutile, zircon, monazite, and xenotime). The average ΣREE values of 400 ppm in bulk ooidal ironstones and 405 ppm in the coarse fractions markedly exceed those in the Post Archean Australian Shale (PAAS). They have similar PAAS-normalized REE + Y patterns, with moderate enrichment in middle REE (MREE), minor Ce* (0.67–1.09), and moderate negative Y* anomalies (0.57–0.70). The fine ore fractions are markedly enriched in ΣREE (Xav = 858 ppm) mainly due to the presence of authigenic light REE phosphates of rhabdophane-tristramite series with Ce > La ≈ Nd ≈ Ca > Pr > Sm. The ΣREE content in fresh carbonate ores is below that in PAAS (Xav = 103 ppm), but approaches the latter in oxidized crusts (Xav = 178 ppm). The Kerch ironstones also contain REE-poor early-diagenetic Fe2+ phosphate vivianite (ΣREE Xav = 0.93 ppm) and Ca-Fe2+ phosphate anapaite (ΣREE Xav = 6.95 ppm) with typical seawater REE + Y distributions. The ooidal ironstones show MREE-enriched patterns with distinct negative Y* anomalies, which reveals Fe3+-(oxy)hydroxides as chief carriers of adsorbed REE (mainly MREE). The Kerch ironstones accumulated REE progressively due to hysteretic dissolution and precipitation of Fe3+-(oxy)hydroxides in oscillating redox conditions. The diagenetic source of REE stored in ooidal goethite ironstones was inferred from the PAAS-normalized values: CeN/CeN* vs Nd and CeN/CeN* vs YN/HoN discrimination diagrams. In general, the REE + Y budget of the Kerch ooidal ironstones mainly formed during early diagenesis and scavenging from pore water, with a minor contribution of siliciclastic inputs, in the absence of hydrothermalism. © 2020 Elsevier B.V.
Ключевые слова: Fe3+-(oxy)hydroxides; Ooidal ironstones; Rare earth elements; Rhabdophane-tristramite; Vivianite; Alumina; Aluminum oxide; Budget control; Deposits; Exploratory geochemistry; Hematite; Lime; Ores; Phosphate minerals; Phosphorus; Rare earths; Silica; Silicate minerals; Trace elements; Underwater mineralogy; Zircon; Depositional environment; Discrimination diagram; Early diagenesis; Major and trace elements; Normalized values; Ooidal ironstones; Positive correlations; Siliciclastic input; Neodymium; depositional environment; geochemistry; hydroxide; iron oxide; Ukraine; Sea of Azov; Kerch Peninsula; Crimea; Black Sea; yttrium; vivianite; speciation (chemistry); spatial distribution; phosphorus; ooid; mineralogy; ironstone; Titanium dioxide; rare earth element; Anapaite;
Издано: 2020
Физ. хар-ка: 103827
Цитирование: 1. Afify, A.M., Sanz-Montero, M.E., Calvo, J.P., Wanas, H.A., Diagenetic origin of ironstone crusts in the lower Cenomanian Bahariya formation, Bahariya depression, Western Desert, Egypt. J. Afr. Earth Sci. 101 (2015), 333–349, 10.1016/j.jafrearsci.2014.10.005.
2. Afify, A.M., Sanz-Montero, M.E., Calvo, J.P., Differentiation of ironstone types by using rare earth elements and yttrium geochemistry – a case study from the Bahariya region, Egypt. Ore Geol. Rev. 96 (2018), 247–261, 10.1016/j.oregeorev.2018.04.019.
3. Alibo, D.S., Nozaki, Y., Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta 63:3–4 (1999), 363–372.
4. Arbuzov, V.A., Bobrushkin, L.G., Litvinenko, A.U., Morokhovskaya M.S., Muratov, M.V., Naumenko, P.I., Nevoisa, G.G., 1967. The Kerch Iron Ore Basin. Nedra, Moscow, pp. 576. (in Russian).
5. Artemyev, D.A., Ankushev, M.N., Trace elements of Cu-(Fe)-sulfide inclusions in bronze age copper slags from South Urals and Kazakhstan: ore sources and alloying additions. Minerals, 9, 2019, 746, 10.3390/min9120746.
6. Baioumy, H.M., Ahmed, A.H., Khedr, M.Z., A mixed hydrogenous and hydrothermal origin of the Bahariya iron ores, Egypt: evidences from the trace and rare earth element geochemistry. J. Geochem. Explor. 146 (2014), 149–162, 10.1016/j.gexplo.2014.08.008.
7. Baioumy, H., Omran, M., Fabritius, T., Mineralogy, geochemistry and the origin of high-phosphorus oolitic iron ores of Aswan, Egypt. Ore Geol. Rev. 80 (2017), 185–199, 10.1016/j.oregeorev.2016.06.030.
8. Balaram, V., Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10:4 (2019), 1285–1303, 10.1016/j.gsf.2018.12.005.
9. Bao, Z., Zhao, Z., Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 33:3–4 (2008), 519–535, 10.1016/j.oregeorev.2007.03.005.
10. Barker, S., Dynamics of fluid flow and fluid chemistry during crustal shortening. (PhD thesis), 2007, The Australian National University, 1–217.
11. Bau, M., Dulski, P., Möller, P., Yttrium and holmium in South Pacific seawater: vertical distribution and possible fractionation mechanisms. Chem. Erde 55 (1995), 1–15.
12. Bau, M., Koschinsky, A., Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochem. J. 43:1 (2009), 37–47, 10.2343/geochemj.1.0005.
13. Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T., Usui, A., Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 381 (2014), 1–9, 10.1016/j.chemgeo.2014.05.004.
14. Bekker, A., Planavsky, N.J., Krapež, B., Rasmussen, B., Hofmann, A., Slack, J.F., Rouxel, O.J., Konhauser, K.O., Iron formations: their origins and implications for ancient seawater chemistry. Holland, H., Turekian, K., (eds.) Treatise on Geochemistry, second ed., 2014, Elsevier Ltd, 561–628, 10.1016/B978-0-08-095975-7.00719-1.
15. Berger, A., Gnos, E., Janots, E., Fernandez, A., Giese, J., Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem. Geol. 254:3–4 (2008), 238–248, 10.1016/j.chemgeo.2008.03.006.
16. Berger, A., Janots, E., Gnos, E., Frei, R., Bernier, F., Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Appl. Geochem. 41 (2014), 218–228, 10.1016/j.apgeochem.2013.12.013.
17. Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., Whitehouse, M.J., Characterization of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 222 (2004), 43–60, 10.1016/j.epsl.2004.02.016.
18. Boyle, E., Collier, R., Dengler, A.T., Edmond, J.M., Ng, A.C., Stallard, R.F., On the chemical mass-balance in estuaries. Geochim. Cosmochim. Acta 38:11 (1974), 1719–1728, 10.1016/0016-7037(74)90188-4.
19. Byrne, R.H., Kim, K.H., Rare earth element scavenging in seawater. Geochim. Cosmochim. Acta 54:10 (1990), 2645–2656, 10.1016/0016-7037(90)90002-3.
20. Carvalho, L., Monteiro, R., Figueira, P., Mieiro, C., Almeida, J., Pereira, E., Magalhães, V., Pinheiro, L., Vale, C., Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: Evidence of Cd, As and Ba fronts in upper layers. Deep Sea Res Part I: Oceanogr. Res. Pap. 131 (2018), 133–143, 10.1016/j.dsr.2017.12.003.
21. Chakhmouradian, A.R., Zaitsev, A.N., Rare earth mineralization in igneous rocks: sources and processes. Elements 8:5 (2012), 347–353, 10.2113/gselements.8.5.347.
22. Chakhmouradian, A.R., Wall, F., Rare earth elements: minerals, mines, magnets (and more). Elements 8:5 (2012), 333–340, 10.2113/gselements.8.5.333.
23. Chen, J., Algeo, T.J., Zhao, L., Chen, Z.-Q., Cao, L., Zhang, L., Li, Y., Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth Sci. Rev. 149 (2015), 181–202, 10.1016/j.earscirev.2015.01.013.
24. Chukanov, N.V., 2005. Minerals of the Kerch iron-ore basin in Eastern Crimea. Mineralogical Almanac, vol. 8. Mineral. Almanac Association Ecost, Moscow, pp. 112.
25. Cutter, G.A., Moffett, J.G., Nielsdóttir, M.C., Sanial, V., Multiple oxidation state trace elements in suboxic waters off Peru: in situ redox processes and advective/diffusive horizontal transport. Mar. Chem. 201 (2018), 77–89, 10.1016/j.marchem.2018.01.003.
26. Dai, S.F., Yan, X.Y., Ward, C.R., Hower, J.C., Zhao, L., Wang, X., Zhao, L., Ren, D., Finkelman, R.B., Valuable elements in Chinese coals: a review. Int. Geol. Rev. 60 (2018), 590–620, 10.1080/00206814.2016.1197802.
27. De Carlo, E.H., Wen, X.-Y., Irving, M., The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles. Aquat. Geochem. 3 (1997), 357–389, 10.1023/A:1009664626181.
28. Dubinin, A.V., Geochemistry of rare earth elements in the ocean. Lithol. Miner. Resour. 39 (2004), 289–307, 10.1023/B:LIMI.0000033816.14825.a2.
29. Dubyna, A.V., Kryvdik, S.G., Sharygin, V.V., Geochemistry of alkali and nepheline syenites of the Ukrainian Shield: ICP-MS data. Geochem. Int. 52:10 (2014), 842–856, 10.1134/S0016702914080023.
30. Egger, M., Jilbert, T., Behrends, T., Rivard, C., Slomp, C.P., Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochim. Cosmochim. Acta 169 (2015), 217–235, 10.1016/j.gca.2015.09.012.
31. Emsbo, P., McLaughlin, P.I., Breit, G.N., du Bray, E.A., Koenig, A.E., Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis?. Gondwana Res. 27 (2015), 776–785, 10.1016/j.gr.2014.10.008.
32. Fan, H.R., Yang, K.F., Hu, F.F., Liu, S., Wang, K.Y., The giant Bayan Obo REE-Nb-Fe deposit, China: controversy and ore genesis. Geosci. Front. 7:3 (2016), 335–344, 10.1016/j.gsf.2015.11.005.
33. Franceschelli, M., Puxeddu, M., Carta, M., Mineralogy and geochemistry of Late Ordovician phosphate-bearing oolitic ironstones from NW Sardinia, Italy. Mineral. Petrol. 69:3–4 (2000), 267–293, 10.1007/s007100070024.
34. Garnit, H., Bouhlel, S., Petrography, mineralogy and geochemistry of the Late Eocene oolitic ironstones of the Jebel Ank, Southern Tunisian Atlas. Ore Geol. Rev. 84 (2017), 134–153, 10.1016/j.oregeorev.2016.12.026.
35. Gloaguen, E., Branquet, Y., Boulvais, P., Moëlo, Y., Chauvel, J.J., Chiappero, P.J., Marcoux, E., Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal-As-Sb-Au mineralisation during Hercynian strike-slip deformation. Miner. Deposita 42:4 (2007), 399–422, 10.1007/s00126-006-0120-4.
36. Golubovskaya, E.V., Problem of the origin of the “caviar” near-share facies “roe” ores in iron ore deposits of the Kerch Peninsula. Lithol. Miner. Resour. 67 (1997), 661–667 (in Russian).
37. Golubovskaya, E.V., Origin of the “brown” ore in iron ore deposits of the Kerch Peninsula. Lithol. Miner. Resour. 3 (1999), 244–251 (in Russian).
38. Golubovskaya, E.V., Facies and geochemical features of the iron ore complex of the Kerch Peninsula. Lithol. Miner. Resour. 36:3 (2001), 224–235, 10.1023/A:1010425324458.
39. Golubovskaya, E.V., Some geochemical features of iron ores from the Lisakov deposit. Lithol. Miner. Resour. 38 (2003), 275–281, 10.1023/A:1023920812064.
40. Gordeev, V.V., Lisitzin, A.P., Geochemical interaction between the freshwater and marine hydrospheres. Russ. Geol. Geophys. 55:5–6 (2014), 562–581, 10.1016/j.rgg.2014.05.004.
41. Gursky D.S., Esipchuk K.E., Kalinin V.I., Kulish E.A., 2005. Metal and non-metallic minerals of Ukraine, vol. 1. Center of Europe, Kiev and Lviv, pp. 783. (In Russian).
42. Hatch, G.P., Dynamics in the global market for rare earths. Elements 8:5 (2012), 341–346, 10.2113/gselements.8.5.341.
43. Hsu, T.W., Jiang, W.T., Wang, Y., Authigenesis of vivianite as influenced bymethaneinduced sulfidization in cold-seep sediments off southwestern Taiwan. J. Asia Earth Sci. 89 (2014), 88–97, 10.1016/j.jseaes.2014.03.027.
44. Jeffery, P.G., Chemical Methods of Rock Analysis, 1970, Pergamon Press, Oxford and New York, 507.
45. Kafle, B., Stratigraphy, petrography and geochemistry of the Bad Heart Formation, Northwestern Alberta. (Ms thesis), 2011, University of Alberta, Edmonton, 150, 10.7939/R31P5Z.
46. Kholodov, V.N., Golubovskaya, E.V., Nedumov, R.I., Origin and prospects of the Cimmerian iron ore basin in Ukraine and Russia. Lithol. Miner. Resour. 49:5 (2014), 383–405, 10.1134/S0024490214050046.
47. Kim, J.H., Torres, M.E., Haley, B.A., Kastner, M., Pohlman, J.W., Riedel, M., Lee, Y.J., The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chem. Geol. 291 (2012), 152–165, 10.1016/j.chemgeo.2011.10.010.
48. Kogarko, L.N., Kononova, V.A., Orlova, M.P., Wooley, A.R., Alkaline Rocks and Carbonatites of the World. Part Two: Former USSR, 1995, Chapman & Hall, London and New York, 226.
49. Kokh, S.N., Shnyukov, E.F., Sokol, E.V., Novikova, S.A., Kozmenko, O.A., Semenova, D.V., Rybak, E.N., Heavy carbon travertine related to methane generation: a case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment. Geol. 325 (2015), 26–40, 10.1016/j.sedgeo.2015.05.005.
50. Krenn, E., Finger, F., Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: microprobe data and geochronological implications. Lithos 95:1–2 (2007), 130–147, 10.1016/j.lithos.2006.07.007.
51. Krishnamurthy, N., Gupta, C.K., Extractive Metallurgy of Rare Earths, 2005, CRC Press, Boca Raton, 504.
52. Kynicky, J., Smith, M.P., Xu, C., Diversity of rare earth deposits: the key example of China. Elements 8:5 (2012), 361–367, 10.2113/gselements.8.5.361.
53. Lakshtanov, L.Z., Stipp, S.L.S., Experimental study of europium (III) coprecipitation with calcite. Geochim. Cosmochim. Acta 68:4 (2004), 819–827, 10.1016/j.gca.2003.07.010.
54. Li, F., Webb, G.E., Algeo, T.J., Kershaw, S., Lu, C., Oehlert, A.M., Gong, Q., Pourmand, A., Tan, X., Modern carbonate ooids preserve ambient aqueous REE signatures. Chem. Geol. 509 (2019), 163–177, 10.1016/j.chemgeo.2019.01.015.
55. Lugovskaya, I.G., Alikberov, V.M., Pechenkin, I.G., Tigunov, L.P., Contribution of VIMS to the investigation of Kerchian iron ores. Explor. Prot. Miner. Res. 2 (2015), 3–11 (in Russian).
56. Malakhovsky, V.F., Geology and Geochemistry of Iron Ores and their Major Components, 1956, Publishing House of Academy of Sciences Ukrainian SSR, Kiev, 210 (in Russian).
57. Mariano, A.N., Mariano, A., Rare earth mining and exploration in North America. Elements 8:5 (2012), 369–376, 10.2113/gselements.8.5.369.
58. Maslov, A.V., Shevchenko, V.P., REE-Th systematics of the suspended particulate matter and bottom sediments from the mouth zones of the world rivers of different categories/classes and some large Russian Arctic rivers. Geochem. Int. 57:1 (2019), 56–73, 10.1134/S0016702919010075.
59. Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., Kappler, A., The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12 (2014), 797–808, 10.1038/nrmicro3347.
60. Miyawaki, R., Nakai, I., Crystal chemical aspects of rare earth minerals. Jones, A.P., Wall, F., Williams, C.T., (eds.) Rare Earth Minerals. The Mineralogical Society Series, 1996, Chapman and Hall, London, 21–40.
61. Mosar, J., Kangarli, T., Bochud, M., Glasmacher, U.A., Rast, A., Brunet, M.F., Sosson, M., Cenozoic-Recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan. Sosson, M., Kaymakci, N., Stephenson, A., Bergerat, F., Starostenko, V., (eds.) Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform, Geological Society Special Publications, 2010, MPG Books Ltd, Bodmin, 261–280, 10.1144/SP340.12.
62. Muratov, M.V., Paleogeography of the Cimmerian Age (Middle Pliocene) in the Black Sea-Caspian basin. Lithol. Miner. Resour. 4 (1964), 3–20 (in Russian).
63. Nedumov, R.I., Lithology, geochemistry, and paleogeography of Cenozoic deposits in the Caucasus foothills. Lithol. Miner. Resour. 1 (1994), 69–77 (in Russian).
64. Novoselov, K.A., Belogub, E.V., Kotlyarov, V.A., Filippova, K.A., Sadykov, S.A., Mineralogical and geochemical features of oolitic ironstones from the Sinara-Techa deposit, Kurgan district, Russia. Geol. Ore Depos. 60:3 (2018), 265–276, 10.1134/S1075701518030066.
65. Ohta, A., Kawabe, I., Rare earth element partitioning between Fe oxyhydroxide precipitates and aqueous NaCl solutions doped with NaHCO3: determinations of rare earth element complexation constants with carbonate ions. Geochem. J. 34 (2000), 439–454, 10.2343/geochemj.34.439.
66. Ohta, A., Kawabe, I., REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2. Geochim. Cosmochim. Acta 65 (2001), 695–703, 10.1016/S0016-7037(00)00578-0.
67. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26 (2011), 2508–2518.
68. Philip, H., Cisternas, A., Gvishiani, A., Gorshkov, A., The Caucasus: an actual example of the initial stages of continental collision. Tectonophys. 161:1–2 (1989), 1–21, 10.1016/0040-1951(89)90297-7.
69. Popov, S.V., Rögl, F., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G., Kováč, M., 2004. Lithological-paleogeographic maps of Paratethys. 10 maps Late Eocene to Pliocene. E.Schweizerbrat'sche Verlagsbuchhandlung, Stuttgart, pp. 73.
70. Popov, S.V., Antipov, M.P., Zastrozhnov, A.S., Kurina, E.E., Pinchuk, T.N., Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr. Geol. Correl. 18:2 (2010), 200–224, 10.1134/S0869593810020073.
71. Quinn, K.A., Byrne, R.H., Schijf, J., Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of pH and ionic strength. Mar. Chem. 99:1–4 (2006), 128–150, 10.1016/j.marchem.2005.05.011.
72. Raiswell, R., Canfield, D.E., The iron biogeochemical cycle past and present. Geochem. Perspect., 1(1), 2012, 156 pp, 10.7185/geochempersp.1.1.
73. Quinn, K.A., Byrne, R.H., Schijf, J., Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of solution complexation with carbonate. Geochim. Cosmochim. Acta 70:16 (2006), 4151–4165, 10.1016/j.gca.2006.06.014.
74. Rahiminejad, A.H., Zand-Moghadam, H., Synsedimentary formation of ooidal ironstone: an example from the Jurassic deposits of SE central Iran. Ore Geol. Rev. 95 (2018), 238–257, 10.1016/j.oregeorev.2018.02.028.
75. Rasmussen, B., Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am. J. Sci. 296 (1996), 601–632, 10.2475/ajs.296.6.601.
76. Rasmussen, B., Buick, R., Taylor, W.R., Removal of oceanic REE by authigenic precipitation of phosphatic minerals, Earth Planet. Sci. Lett. 164 (1998), 135–149, 10.1016/S0012-821X(98)00199-X.
77. Rollinson, H., Using Geochemical Data: Evolution, Presentation, Interpretation, 1993, Longman Scientific & Technica, Harlow, Essex, England: New York, 352.
78. Romanek, C.S., Jiménez-López, C., Navarro, A.R., Sánchez-Román, M., Sahai, N., Coleman, M., Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. Geochim. Cosmochim. Acta 73 (2009), 5361–5376, 10.1016/j.gca.2009.05.065.
79. Rothe, M., Kleeberg, A., Hupfer, M., The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci. Rev. 158 (2016), 51–64, 10.1016/j.earscirev.2016.04.008.
80. Rudmin, M., Banerjee, S., Abdullayev, E., Ruban, A., Filimonenko, E., Lyapina, E., Kashapov, R., Mazurov, A., Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: assessment of formation processes and relationship with regional and global earth processes. J. Palaeogeogr. 9 (2020), 1–21, 10.1186/s42501-019-0049-z.
81. Rudmin, M., Mazurov, A., Banerjee, S., Origin of ooidal ironstones in relation to warming events: Cretaceous-Eocene Bakchar deposit, South-East Western Siberia. Mar. Pet. Geol. 100 (2019), 309–325, 10.1016/j.marpetgeo.2018.11.023.
82. Rudmin, M., Reva, I., Sokol, E., Abdullayev, E., Ruban, A., Kudryavtsev, A., Tolkachev, O., Mazurov, A., Minerals of rare earth elements in high-phosphorus ooidal ironstones of the Western Siberia and Turgai Depression. Mineral, 10(1), 2020, 11, 10.3390/min10010011.
83. Rudnick, R.L., Gao, S., Composition of the continental crust. Rudnick, R.L., (eds.) Treatise on Geochemistry, 2003, Elsevier, Amsterdam, 1–64, 10.1016/B0-08-043751-6/03016-4.
84. Rue, E.L., Smith, G.J., Cutter, G.A., Bruland, K.W., The response of trace element redox couples to suboxic conditions in the water column. Deep-Sea Res. 44 (1997), 113–134.
85. Ruttenberg, K.C., The global phosphorus cycle. Holland, H., Turekian, K., (eds.) Treatise on Geochemistry, 2003, Elsevier Ltd, 585–643.
86. Salama, W., El Aref, M., Gaupp, R., Mineralogical and geochemical investigations of the middle Eocene ironstones, El Bahariya depression, Western Desert, Egypt. Gondwana Res. 22:2 (2012), 717–736, 10.1016/j.gr.2011.11.011.
87. Schmidt, M., Stumpf, T., Walther, C., Geckeis, H., Fanghänel, T., Incorporation versus adsorption: substitution of Ca2+ by Eu3+ and Cm3+ in aragonite and gypsum. Dalton Trans. 33 (2009), 6645–6650, 10.1039/b822656c.
88. Seredin, V.V., Dai, S., Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal. Geol. 94 (2012), 67–93, 10.1016/j.coal.2011.11.001.
89. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32:5 (1976), 751–767.
90. Shatsky, V., Sitnikova, E., Kozmenko, O., Palessky, S., Nikolaeva, I., Zayachkovsky, A., Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 47 (2006), 482–496.
91. Shnyukov, E.F., 1965. The genesis of the Cimmerian iron ores of the Azov-Black Sea ore province. Naukova Dumka, Kiev, pp. 195. (in Russian).
92. Shnyukov, E., Sheremetiev, V., Maslakov, N., Kutniy, V., Gusakov, I., Trofimov, V., Mud Volcanoes of the Kerch-Taman Region, 2005, GlavMedia Publishing House, Krasnodar, 173 (in Russian).
93. Sholkovitz, E.R., The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth Planet. Sci. Lett. 41:1 (1978), 77–86, 10.1016/0012-821X(78)90043-2.
94. Sholkovitz, E.R., The geochemistry of rare earth elements in the Amazon River estuary. Geochim. Cosmochim. Acta 57:10 (1993), 2181–2190, 10.1016/0016-7037(93)90559-F.
95. Sholkovitz, E.R., The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat. Geochem. 1:1 (1995), 1–34, 10.1007/BF01025229.
96. Smith, A. J. B., Gutzmer, J., Beukes, N. J., Reinke, C., Bau, M., 2008. Rare earth elements (REE) in Banded Iron Formations – link between geochemistry and mineralogy. In: Australasian Institute of Mining and Metallurgy Publication Series 2008, 9th International Congress for Applied Mineralogy, ICAM 2008; Brisbane, QLD; Australia; 8 September 2008 through 10 September 2008, pp. 651-658.
97. Sokol, E.V., Kokh, S.N., Kozmenko, O.A., Novikova, S.A., Khvorov, P.V., Nigmatulina, E.A., Belogub, E.V., Kirillov, M.V., Mineralogy and geochemistry of mud volcanic ejecta: a new look at old issues (a case study from the Bulganak field, Northern Black Sea). Mineral, 8(8), 2018, 344, 10.3390/min8080344.
98. Sokol, E.V., Kokh, S.N., Kozmenko, O.A., Lavrushin, V.Y., Belogub, E.V., Khvorov, P.V., Kikvadze, O.E., Boron in an onshore mud volcanic environment: case study from the Kerch Peninsula, the Caucasus continental collision zone. Chem. Geol. 525 (2019), 58–81, 10.1016/j.chemgeo.2019.07.018.
99. Sposito, G., Skipper, N.T., Sutton, R., Park, S.H., Soper, A.K., Greathouse, J.A., Surface geochemistry of the clay minerals. Proc. Nat. Acad. Sci. 96:7 (1999), 3358–3364, 10.1073/pnas.96.7.3358.
100. Sturesson, U., Lower Palaeozoic iron oolites and volcanism from a Baltoscandian perspective. Sediment. Geol. 159 (2003), 241–256, 10.1016/S0037-0738(02)00330-5.
101. Surya Prakash, S.L., Ray, D., Paropkari, A.L., Mudholkar, A.V., Satyanaraynan, M., Sreenivas, B., Chandrasekharam, D., Kota, Dalayya, Raju, Kamesh, Sujata Kaisary, K.A., Balaram Gurav, V Tripti, Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: comparative study between hydrogenous and hydrothermal deposits. Chem. Geol. 312–313 (2012), 127–137, 10.1016/j.chemgeo.2012.03.024.
102. Taylor, S.R., McLennan, S.M., The Continental Crust: Its Evolution and Composition, 1985, Blackwell Scientific Publications, Oxford, 312.
103. Taylor, K.G., Konhauser, K.O., Iron in Earth surface systems: a major player in chemical and biological processes. Elements 7 (2011), 83–88, 10.2113/gselements.7.2.83.
104. Tsipursky, S.I., Golubovskaya, E.V., Smectites of “tobacco” ores of the Kerch deposits. Lithol. Miner. Resour. 2 (1989), 58–73 (in Russian).
105. USEPA, Method 3051A – microwave assisted acid digestion of sediments. Sludges, Soils, and Oils, 2007, 1–30.
106. Wall, F., Rare earth elements. Gun, G., (eds.) Critical Metals Handbook, first ed, 2014, John Wiley & Sons, Ltd, 312–339.
107. Wang, J., Shen, S., Kang, J., Li, H., Guo, Z., Effect of ore solid concentration on the bioleaching of phosphorus from high-phosphorus iron ores using indigenous sulfur-oxidizing bacteria from municipal wastewater. Process Biochem. 45 (2010), 1624–1631, 10.1016/j.procbio.2010.06.013.
108. Williams-Jones, A.E., Migdisov, A.A., Samson, I.M., Hydrothermal mobilisation of the rare earth elements – a tale of “ceria” and “yttria”. Elements 8:5 (2012), 355–360, 10.2113/gselements.8.5.355.
109. Wu, C., Yuan, Z., Bai, G., Rare earth deposits in China. Jones, A.P., Wall, Frances, Williams, C.T., (eds.) Rare EARTH Minerals-chemistry, Origin and Ore Deposits. The Mineralogical Society Series, 1996, Chapman and Hall, London, 281–310.
110. Xiao, Y., Huang, L., Long, Z., Feng, Z., Wang, L., Adsorption ability of rare earth elements on clay minerals and its practical performance. J. Rare Earths 34:5 (2016), 543–548, 10.1016/S1002-0721(16)60060-1.
111. Yang, J., Torres, M., McManus, J., Algeo, T.J., Hakala, J.A., Verba, C., Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: role of post-depositional diagenesis of phosphorus phases. Chem. Geol. 466 (2017), 533–544, 10.1016/j.chemgeo.2017.07.003.
112. Young, T.P., Phanerozoic ironstones: an introduction and review. Young, T.P., Gordon Taylor, W.E., (eds.) Phanerozoic Ironstones. Geological Society Special Publications, 1989, Alden Press, Oxford, ix–xxv, 10.1144/GSL.SP.1989.046.01.02.
113. Zhao, Y., Zhou, Y., Zhang, J., Zheng, C., Trace element resource recovery from coal and coal utilization by-products. Zhao, Y., Li, H., Yang, J., Zheng, C., (eds.) Emission and Control of Trace Elements from Coal-derived Gas Streams, 2019, Woodhead Publishing, 424, 10.1016/b978-0-08-102591-8.00009-x.
114. Zitzmann, A., 1978. The iron ore deposits of Europe and adjacent areas: explanatory notes to the International Map of the iron ore deposits of Europe, 1:2500000. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp. 386.
115. Zonenshain, L.P., Le Pichon, X., Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophys. 123 (1986), 181–240, 10.1016/0040-1951(86)90197-6.