Инд. авторы: Dymshits A., Sharygin I.S., Liu Z., Korolev N., Malkovets V.G., Alifirova T.A., Yakovlev I.V., Xu Y.-G.
Заглавие: Oxidation state of the lithospheric mantle beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, upper Muna field, Siberian Craton
Библ. ссылка: Dymshits A., Sharygin I.S., Liu Z., Korolev N., Malkovets V.G., Alifirova T.A., Yakovlev I.V., Xu Y.-G. Oxidation state of the lithospheric mantle beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, upper Muna field, Siberian Craton // Minerals. - 2020. - Vol.10. - Iss. 9. - Art.740. - ISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/MIN10090740; РИНЦ: 45266986; SCOPUS: 2-s2.0-85091384449;
Реферат: eng: The oxidation state of the mantle plays an important role in many chemical and physical processes, including magma genesis, the speciation of volatiles, metasomatism and the evolution of the Earth’s atmosphere. We report the first data on the redox state of the subcontinental lithospheric mantle (SCLM) beneath the Komsomolskaya–Magnitnaya kimberlite pipe (KM), Upper Muna field, central Siberian craton. The oxygen fugacity of the KM peridotites ranges from −2.6 to 0.3 logarithmic units relative to the fayalite–magnetite–quartz buffer (∆logf O2 (FMQ)) at depths of 120–220 km. The enriched KM peridotites are more oxidized (−1.0–0.3 ∆logf O2 (FMQ)) than the depleted ones (from −1.4 to −2.6 ∆logf O2 (FMQ)). The oxygen fugacity of some enriched samples may reflect equilibrium with carbonate or carbonate-bearing melts at depths >170 km. A comparison of well-studied coeval Udachnaya and KM peridotites revealed similar redox conditions in the SCLM of the Siberian craton beneath these pipes. Nevertheless, Udachnaya peridotites show wider variations in oxygen fugacity (−4.95–0.23 ∆logf O2 (FMQ)). This indicates the presence of more reduced mantle domains in the Udachnaya SCLM. In turn, the established difference in the redox conditions is a good explanation for the lower amounts of resorbed diamonds in the Udachnaya pipe (12%) in comparison with the KM kimberlites (33%). The obtained results advocate a lateral heterogeneity in the oxidation state of the Siberian SCLM. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Ключевые слова: Siberian craton; Redox state; Peridotite; Oxidation state; Lithospheric mantle; Kimberlite; Diamond; Diamond; Craton; Mantle metasomatism; Xenolith;
Издано: 2020
Физ. хар-ка: 740, с.1-22
Цитирование: 1. Kadik, A.A.; Sobolev, N.V.; Zharkova, E.V.; Pokhilenko, N.P. Redox conditions of formations of diamond-bearing peridotite xenoliths from Udachnaya kimberlite pipe, Yakutia. Geokhimiya 1989, 27, 1120–1135.
2. Eggler, D.H. The effect of CO2 upon partial melting of peridotite in the system Na2 O-CaO-Al2 O2-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite-H2 O-CO2 system. Am. J. Sci. 1978, 278, 305–343. [CrossRef]
3. Foley, S.F.; Yaxley, G.M.; Rosenthal, A.; Buhre, S.; Kiseeva, E.S.; Rapp, R.P.; Jacob, D.E. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 2009, 112, 274–283. [CrossRef]
4. Taylor, W.R.; Green, D.H. Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle. Nature 1988, 332, 349–352. [CrossRef]
5. Wood, B.J.; Bryndzia, L.T.; Johnson, K.E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 1990, 248, 337–345. [CrossRef]
6. Stagno, V. Carbon, carbides, carbonates and carbonatitic melts in the Earth's interior. J. Geol. Soc. 2019, 176, 375–387. [CrossRef]
7. Foley, S.F. A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Pet. 2011, 52, 1363–1391. [CrossRef]
8. Frost, D.J.; McCammon, C.A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 2008, 36, 389–420. [CrossRef]
9. Ballhaus, C.; Berry, R.F.; Green, D.H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contrib. Miner. Pet. 1991, 107, 27–40. [CrossRef]
10. Gudmundsson, G.; Wood, B.J. Experimental tests of garnet peridotite oxygen barometry. Contrib. Miner. Pet. 1995, 119, 56–67. [CrossRef]
11. Stagno, V.; Ojwang, D.O.; McCammon, C.A.; Frost, D.J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 2013, 493, 84–88. [CrossRef] [PubMed]
12. Miller, W.G.R.; Holland, T.J.B.; Gibson, S.A. Garnet and spinel oxybarometers: New internally consistent multi-equilibria models with applications to the oxidation state of the lithospheric mantle. J. Pet. 2016, 57, 1199–1222. [CrossRef]
13. Creighton, S.; Stachel, T.; Matveev, S.; Hofer, H.; McCammon, C.; Luth, R.W. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Miner. Pet. 2009, 157, 491–504. [CrossRef]
14. Creighton, S.; Stachel, T.; Eichenberg, D.; Luth, R.W. Oxidation state of the lithospheric mantle beneath diavik diamond mine, central slave craton, NWT, Canada. Contrib. Miner. Pet. 2010, 159, 645–657. [CrossRef]
15. Yaxley, G.; Berry, A.; Rosenthal, A.; Woodland, A.; Paterson, D. Redox preconditioning deep cratonic lithosphere for kimberlite genesis-evidence from the central slave craton. Sci. Rep. 2017, 7, 30. [CrossRef]
16. Lazarov, M.; Woodland, A.B.; Brey, G.P. Thermal state and redox conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch mine, South Africa. Lithos 2009, 112, 913–923. [CrossRef]
17. McCammon, C.; Kopylova, M.G. A redox profile of the slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Miner. Pet. 2004, 148, 55–68. [CrossRef]
18. Woodland, A.B.; Kornprobst, J.; Tabit, A. Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 2006, 89, 222–241. [CrossRef]
19. Yaxley, G.M.; Berry, A.J.; Kamenetsky, V.S.; Woodland, A.B.; Golovin, A.V. An oxygen fugacity profile through the Siberian craton–Fe K-edge XANES determinations of Fe3+ /Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 2012, 140, 142–151. [CrossRef]
20. Pokhilenko, L.N.; Pokhilenko, N.P.; Fedorov, I.I.; Tomilenko, A.A.; Usova, L.V.; Fomina, L.N. Fluide regime peculiarities of the lithoshere mantle of the Siberian platform. In Deep-seated Magmatism, its Sources and Plumes; Vladykin, N.V., Ed.; Russian Academy of Sciences: Irkutsk, Russia, 2008; pp. 122–136.
21. Goncharov, A.G.; Ionov, D.A.; Doucet, L.S.; Pokhilenko, L.N. Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 2012, 357, 99–110. [CrossRef]
22. Rosen, O.M.; Manakov, A.V.; Suvorov, V.D. The collisional system in the northeastern Siberian craton and a problem of diamond-bearing lithospheric keel. Geotectonics 2005, 39, 456–479.
23. Alifirova, T.A.; Pokhilenko, L.N.; Korsakov, A.V. Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia. Lithos 2015, 226, 31–49. [CrossRef]
24. Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M. Geology of the USSR: Plate Tectonic Synthesis; American Geophysical Union: Washington, DC, USA, 1989; Volume 21.
25. Rosen, O.; Condie, K.C.; Natapov, L.M.; Nozhkin, A. Archean and early proterozoic evolution of the Siberian craton: A preliminary assessment. In Developments in Precambrian Geology; Elsevier: Amsterdam, The Netherlands, 1994; Volume 11, pp. 411–459.
26. Smelov, A.P.; Timofeev, V.F. The age of the North Asian Cratonic basement: An overview. Gondwana Res. 2007, 12, 279–288. [CrossRef]
27. Rosen, O.M.; Serenko, V.P.; Spetsius, Z.V.; Manakov, A.V.; Zinchuk, N.N. Yakutian kimberlite province: Position in the structure of the Siberian craton and composition of the upper and lower crust. Geol. I Geofiz. 2002, 43, 3–26.
28. Griffin, W.; Belousova, E.; O'Neill, C.; O'Reilly, S.Y.; Malkovets, V.; Pearson, N.; Spetsius, S.; Wilde, S. The world turns over: Hadean–Archean crust–mantle evolution. Lithos 2014, 189, 2–15. [CrossRef]
29. Shatsky, V.S.; Malkovets, V.G.; Belousova, E.A.; Tretiakova, I.G.; Griffin, W.L.; Ragozin, A.L.; Gibsher, A.A.; O'Reilly, S.Y. Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U–Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes. Precambrian Res. 2016, 282, 1–20. [CrossRef]
30. Shatsky, V.S.; Malkovets, V.G.; Belousova, E.A.; Tretiakova, I.G.; Griffin, W.L.; Ragozin, A.L.; Wang, Q.; Gibsher, A.A.; O'Reilly, S.Y. Multi-stage modification of paleoarchean crust beneath the anabar tectonic province (Siberian craton). Precambrian Res. 2018, 305, 125–144. [CrossRef]
31. Agashev, A.M.; Pokhilenko, N.P.; Tolstov, A.V.; Polyanichko, V.V.; Mal'kovets, V.G.; Sobolev, N.V. New age data on kimberlites from the yakutian diamondiferous province. Dokl. Earth Sci. 2004, 399, 1142–1145.
32. Davies, G.L.; Sobolev, N.V.; Kharkiv, A.D. New data on the age of Yakutian kimberlites (U–Pb zircon method). Dokl. Akad. Nauk SSSR 1980, 254, 175–179. (In Russian)
33. Kinny, P.D.; Griffin, B.J.; Heaman, L.M.; Brakhfogel, F.F.; Spetsius, Z.V. SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol. I Geofiz. 1997, 38, 91–99.
34. Sun, J.; Liu, C.-Z.; Tappe, S.; Kostrovitsky, S.I.; Wu, F.-Y.; Yakovlev, D.; Yang, Y.-H.; Yang, J.-H. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth Planet. Sci. Lett. 2014, 404, 283–295. [CrossRef]
35. Tretiakova, I.G.; Belousova, E.A.; Malkovets, V.G.; Griffin, W.L.; Piazolo, S.; Pearson, N.J.; O'Reilly, S.Y.; Nishido, H. Recurrent magmatic activity on a lithosphere-scale structure: Crystallization and deformation in kimberlitic zircons. Gondwana Res. 2017, 42, 126–132. [CrossRef]
36. Kostrovitsky, S.; Spetsius, Z.; Yakovlev, D.; Flaass, G.F.D.; Bogush, I.; Pokhilenko, N. Atlas of the Igneous Rocks and Diamond Deposits of the Yakut Kimberlite Province; Pokhilenko, N., Ed.; MPG: Mirniy, Russia, 2015; p. 480.
37. Yakovlev, D.A.; Kostrovitsky, S.I.; Alymova, N.V. Composition features of kimberlites from the upper muna field (Yakutia). Izv. Earth Sci. Sect. Rans 2009, 1, 111–119. (In Russian)
38. Griffin, W.L.; Ryan, C.G.; Kaminsky, F.V.; O'Reilly, S.Y.; Natapov, L.M.; Win, T.T.; Kinny, P.D.; Ilupin, I.P. The Siberian lithosphere traverse: Mantle terranes and the assembly of the Siberian craton. Tectonophysics 1999, 310, 1–35. [CrossRef]
39. Levchenkov, O.A.; Gaidamako, I.M.; Levskii, L.K.; Komarov, A.N.; Yakovleva, S.Z.; Rizvanova, N.G.; Makeev, A.F. U-Pb age of zircon from the Mir and 325 Let Yakutii pipes. Dokl. Earth Sci. 2005, 400, 99–101.
40. Lepekhina, E.; Rotman, A.; Antonov, A.; Sergeev, S. SIMS SHRIMP U-Pb dating of perovskite from kimberlites of the Siberian platform (Verhnemunskoe and Alakite-Marhinskoe fields). In Proceedings of the 9th International Kimberlite Conference: Extended Abstracts, Frankfurt, Germany, 10–15 August 2008; p. 9IKC-A-00353.
41. Lepekhina, E.; Rotman, A.; Antonov, A.; Sergeev, S. SHRIMP U-Pb zircon ages of Yakutian kimberlite pipes. In Proceedings of the 9th International Kimberlite Conference: Extended Abstracts, Frankfurt, Germany, 10–15 August 2008; p. 9IKC-A-00354.
42. Sun, J.; Tappe, S.; Kostrovitsky, S.I.; Liu, C.-Z.; Skuzovatov, S.Y.; Wu, F.-Y. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chem. Geol. 2018, 479, 228–240. [CrossRef]
43. Sarsadskih, N.N.; Blagulkina, V.A.; Silin, Y.I. On the absolute age of the Yakutian kimberlites. Doklady Akademii Nauk SSR. 1966, 168, 420–423. (In Russian)
44. Zaitsev, A.; Smelov, A. Isotope Geochronology of Rocks of the Yakutian Kimberlite Province; DPMGI SB RAS: Yakutsk, Russia, 2010. (In Russian)
45. Kostrovitsky, S.I.; Solov'eva, L.V.; Yakovlev, D.A.; Suvorova, L.F.; Sandimirova, G.P.; Travin, A.V.; Yudin, D.S. Kimberlites and megacrystic suite: Isotope-geochemical studies. Petrology 2013, 21, 127–144. [CrossRef]
46. Zhang, L.; Ren, Z.-Y.; Xia, X.-P.; Yang, Q.; Hong, L.-B.; Wu, D. In situ determination of trace elements in melt inclusions using laser ablation inductively coupled plasma sector field mass spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 361–370. [CrossRef]
47. Le Bas, M.; Streckeisen, A. The IUGS systematics of igneous rocks. J. Geol. Soc. 1991, 148, 825–833. [CrossRef]
48. Pearson, G.; Brooks, N. The formation and evolution of cratonic mantle lithosphere–evidence from mantle xenoliths. In Treatise on Geochemistry; Carlson, R.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3, pp. 255–292.
49. O'Neill, H.S.C.; Wood, B.J. An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Miner. Pet. 1979, 70, 59–70. [CrossRef]
50. Nimis, P.; Grütter, H. Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib. Miner. Pet. 2010, 159, 411–427. [CrossRef]
51. Taylor, W. An experimental test of some geothermometer and geobaro-meter formulations for upper mantle peridotites with application to the ther-mobarometry of fertile lherzolite and garnet websterite. Neues Jahrb. Für Mineral. Abh. 1998, 172, 381–408.
52. Nickel, K.; Green, D. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 1985, 73, 158–170. [CrossRef]
53. Sobolev, N.V.; Lavrent'ev, Y.G.; Pokhilenko, N.P.; Usova, L.V. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib. Miner. Pet. 1973, 40, 39–52. [CrossRef]
54. Grutter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 2004, 77, 841–857. [CrossRef]
55. Harte, B. Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. J. Geol. 1977, 85, 279–288. [CrossRef]
56. Dawson, J.B. Contrasting types of upper mantle metasomatism. In Kimberlites, II: The Mantle and Crust-Mantle Relationships; Kornprobst, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 289–294.
57. Yudin, D.S.; Tomilenko, A.A.; Alifirova, T.A.; Travin, A.V.; Murzintsev, N.G.; Pokhilenko, N.P. Results of 40Ar/39Ar dating of phlogopites from kelyphitic rims around garnet grains (Udachnaya-Vostochnaya kimberlite pipe). Dokl. Earth Sci. 2016, 469, 728–731. [CrossRef]
58. Solov'eva, L.V.; Yasnygina, T.A.; Egorov, K.N. Metasomatic parageneses in deep-seated xenoliths from pipes Udachnaya and Komsomol'skaya-Magnitnaya as indicators of fluid transfer through the mantle lithosphere of the Siberian craton. Russ. Geol. Geophys. 2012, 53, 1304–1323. [CrossRef]
59. Dawson, J.B. Metasomatism and partial melting in upper-mantle peridotite xenoliths from the lashaine volcano, Northern Tanzania. J. Pet. 2002, 43, 1749–1777. [CrossRef]
60. Boullier, A.M.; Nicolas, A. Classification of texture and fabric of peridotite xenoliths from South African kimberlits. Phys. Chem. Earth 1975, 9, 467–476. [CrossRef]
61. Stachel, T.; Aulbach, S.; Brey, G.P.; Harris, J.W.; Leost, I.; Tappert, R.; Viljoen, K.S. The trace element composition of silicate inclusions in diamonds: A review. Lithos 2004, 77, 1–19. [CrossRef]
62. McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [CrossRef]
63. Griffin, W.L.; Ryan, C.G. Trace-elements in indicator minerals-area selection and target evaluation in diamond exploration. J. Geochem. Explor. 1995, 53, 311–337. [CrossRef]
64. Dobrovolsky, D.D. PTQuick Software. Available online: http://www.dimadd.ru/en/Programs/ptquick (accessed on 1 May 2011).
65. Dymshits, A.M.; Sharygin, I.S.; Malkovets, V.G.; Yakovlev, I.V.; Gibsher, A.A.; Alifirova, T.A.; Vorobei, S.S.; Potapov, S.V.; Garanin, V.K. Thermal state, thickness and composition of the lithospheric mantle beneath the upper muna kimberlite field (Siberian craton) constrained by clinopyroxene xenocrysts and comparison with daldyn and mirny fields. Minerals 2020, 10, 549. [CrossRef]
66. Mather, K.A.; Pearson, D.G.; McKenzie, D.; Kjarsgaard, B.A.; Priestley, K. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 2011, 125, 729–742. [CrossRef]
67. Ziberna, L.; Nimis, P.; Kuzmin, D.; Malkovets, V.G. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. Am. Miner. 2016, 101, 2222–2232. [CrossRef]
68. Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81, 2467–2470. [CrossRef]
69. McKenzie, D.; Bickle, M.J. The volume and composition of melt generated by extension of the lithosphere. J. Pet. 1988, 29, 625–679. [CrossRef]
70. Stagno, V.; Frost, D.J. Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet. Sci. Lett. 2010, 300, 72–84. [CrossRef]
71. Ionov, D.A.; Doucet, L.S.; Carlson, R.W.; Golovin, A.V.; Korsakov, A.V. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochim. Cosmochim. Acta 2015, 165, 466–483. [CrossRef]
72. Doucet, L.S.; Ionov, D.A.; Golovin, A.V.; Pokhilenko, N.P. Depth, degrees and tectonic settings of mantle melting during craton formation: Inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet. Sci. Lett. 2012, 359–360, 206–218. [CrossRef]
73. Shu, Q.; Brey, G.P. Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: Temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett. 2015, 418, 27–39. [CrossRef]
74. Agashev, A.M.; Ionov, D.A.; Pokhilenko, N.P.; Golovin, A.V.; Cherepanova, Y.; Sharygin, I.S. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 2013, 160, 201–215. [CrossRef]
75. Howarth, G.H.; Barry, P.H.; Fisher, J.F.P.; Baziotis, I.P.; Pokhilenko, N.P.; Pokhilenko, L.N.; Bodnar, R.J.; Taylor, L.A.; Agashev, A.M. Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos 2014, 184, 209–224. [CrossRef]
76. Shimizu, N.; Pokhilenko, N.P.; Boyd, F.R.; Pearson, D.G. Geochemical characteristics of mantle xenoliths from Udachnaya kimberlite pipe. Geol. I Geofiz. 1997, 38, 194–205.
77. Doucet, L.S.; Ionov, D.A.; Golovin, A.V. The origin of coarse garnet peridotites in cratonic lithosphere: New data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Miner. Pet. 2013, 165, 1225–1242. [CrossRef]
78. Ionov, D.A.; Doucet, L.S.; Strandmann, P.A.E.; Golovin, A.V.; Korsakov, A.V. Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton. Chem. Geol. 2017, 475, 105–121. [CrossRef]
79. Griffin, W.L.; Shee, S.R.; Ryan, C.G.; Win, T.T.; Wyatt, B.A. Harzburgite to lherzolite and back again: Metasomatic processes in ultramafic xenoliths from the wesselton kimberlite, Kimberley, South Africa. Contrib. Miner. Pet. 1999, 134, 232–250. [CrossRef]
80. Kostrovitsky, S.I.; Morikiyo, T.; Serov, I.V.; Yakovlev, D.A.; Amirzhanov, A.A. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian platform. Russ. Geol. Geophys. 2007, 48, 272–290. [CrossRef]
81. Pokhilenko, N.P.; Sobolev, N.V.; Kuligin, S.S.; Shimizu, N. Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. In Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, 17 April 1998; pp. 689–698.
82. Alifirova, T.; Mikhailenko, D.; Korsakov, A.; Golovin, A.; Klemme, S.; Berndt, J. Genetic code of subsolidus garnet and its role in deciphering of Siberian craton metasomatic history. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 841.
83. Gibson, S.A. On the nature and origin of garnet in highly-refractory archean lithospheric mantle: Constraints from garnet exsolved in Kaapvaal craton orthopyroxenes. Miner. Mag. 2017, 81, 781–809. [CrossRef]
84. Ionov, D.A.; Doucet, L.S.; Ashchepkov, I.V. Composition of the lithospheric mantle in the Siberian craton: New constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Pet. 2010, 51, 2177–2210. [CrossRef]
85. Stachel, T.; Harris, J.W. The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [CrossRef]
86. Stachel, T.; Harris, J.W. Syngenetic inclusions in diamond from the Birim field (Ghana)—A deep peridotitic profile with a history of depletion and re-enrichment. Contrib. Miner. Pet. 1997, 127, 336–352. [CrossRef]
87. Simon, N.S.C.; Irvine, G.J.; Davies, G.R.; Pearson, D.G.; Carlson, R.W. The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 2003, 71, 289–322. [CrossRef]
88. Boyd, F.R.; Pokhilenko, N.P.; Pearson, D.G.; Mertzman, S.A.; Sobolev, N.V.; Finger, L.W. Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotite xenoliths. Contrib. Miner. Pet. 1997, 128, 228–246. [CrossRef]
89. Gregoire, M.; Bell, D.R.; Roex, A.P.L. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: Their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Miner. Pet. 2002, 142, 603–625. [CrossRef]
90. Bryndzia, L.T.; Wood, B.J. Oxygen thermobarometry of abyssal spinel peridotites: The redox state and C–O–H volatile composition of the Earth's sub-oceanic upper mantle. Am. J. Sci. 1990, 290, 1093–1116. [CrossRef]
91. Lee, C.-T.A.; Brandon, A.D.; Norman, M. Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: Prospects, limitations, and implications. Geochim. Cosmochim. Acta 2003, 67, 3045–3064. [CrossRef]
92. Wood, B.J.; Pawley, A.; Frost, D.R.; Jephcoat, A.P.; Angel, R.J.; O'Nions, R.K. Water and carbon in the Earth's mantle. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1996, 354, 1495–1511. [CrossRef]
93. Woodland, A.B.; Koch, M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 2003, 214, 295–310. [CrossRef]
94. Litasov, K.D. Physicochemical conditions for melting in the Earth's mantle containing a C-O-H fluid (from experimental data). Russ. Geol. Geophys. 2011, 52, 475–492. [CrossRef]
95. Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the geology of mantle carbon. Rev. Miner. Geochem. 2013, 75, 355–421. [CrossRef]
96. Pokhilenko, N.; Agashev, A.; Litasov, K.; Pokhilenko, L. Carbonatite metasomatism of peridotite lithospheric mantle: Implications for diamond formation and carbonatite-kimberlite magmatism. Russ. Geol. Geophys. 2015, 56, 280–295. [CrossRef]
97. Kolganov, V.F.; Akishev, A.N.; Drozdov, A.V. Mining and Geological Features of the Primary Deposits of Diamonds in Yakutia; Mirny Printing House: Mirniy, Russia, 2013. (In Russian)
98. Malkovets, V.G.; Griffin, W.L.; O'Reilly, S.Y.; Wood, B.J. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 2007, 35, 339–342. [CrossRef]
99. Khokhryakov, A.F.; Pal'Yanov, Y.N. The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Miner. 2007, 92, 909–917. [CrossRef]
100. Khokhryakov, A.F.; Pal'yanov, Y.N. Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Miner. 2010, 95, 1508–1514. [CrossRef]
101. Fedortchouk, Y.; Manghnani, M.H.; Hushur, A.; Shiryaev, A.; Nestola, F. An atomic force microscopy study of diamond dissolution features: The effect of H2 O and CO2 in the fluid on diamond morphology. Am. Miner. 2011, 96, 1768–1775. [CrossRef]
102. Kozai, Y.; Arima, M. Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420 C and 1 GPa with controlled oxygen partial pressure. Am. Miner. 2005, 90, 1759–1766. [CrossRef]
103. Robinson, D.; Scott, J.; Niekerk, A.V.; Anderson, V. Events reflected in the diamonds of some southern African kimberlites. In Proceedings of the Fourth International Kimberlite Conference: Extended Abstracts, Perth, Western Australia, 11–15 August 1986; pp. 421–423.
104. Fedortchouk, Y.; Canil, D.; Carlson, J.A. Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib. Miner. Pet. 2005, 150, 54–69. [CrossRef]
105. Shirey, S.B.; Shigley, J.E. Recent advances in understanding the geology of diamonds. Gems Gemol. 2013, 49, 188–222. [CrossRef]
106. Nowicki, A.V.; Galloway, M.; Roex, A.L.; Gurney, J.; Smith, C.; Canil, D. Iron-in-perovskite oxygen barometry and diamond resorption in kimberlites and lamproites from southern Africa, Russia and Australia. In Proceedings of the 9th International Kimberlite Conference, Frankfurt, Germany, 10–15 August 2008; p. abstract No. 9IKC-A-00301.
107. Kharkiv, A.D.; Zinchuk, N.N.; Kryuchkov, A.I. Primary Diamond Deposits of the World; Nedra: Moscow, Russia, 1998; p. 555. (In Russian)
108. Zinchuk, N.N.; Koptil, V.I. Typomorphizm of the Siberian Platmorm Diamonds; Nedra: Moscow, Russia, 2003; p. 603. (In Russian)
109. Rielli, A.; Tomkins, A.G.; Nebel, O.; Brugger, J.; Etschmann, B.; Paterson, D. Garnet peridotites reveal spatial and temporal changes in the oxidation potential of subduction. Sci. Rep. 2018, 8, 16411. [CrossRef] [PubMed]
110. McCammon, C.A.; Griffin, W.L.; Shee, S.R.; O'Neill, H.S.C. Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: Implications for the survival of diamond. Contrib. Miner. Pet. 2001, 141, 287–296. [CrossRef]