Инд. авторы: Doroshkevich A.G., Prokopyev I.R, Ponomarchuk A.V., Savatenkov V.M., Kravchenko A.A., Ivanov A.I., Wohlgemuth-Ueberwasse C.
Заглавие: Petrology and geochemistry of the late Mesozoic Dzheltula alkaline igneous complex, Aldan–Stanovoy Shield, Russia: constraints on derivation from the ancient enriched mantle source
Библ. ссылка: Doroshkevich A.G., Prokopyev I.R, Ponomarchuk A.V., Savatenkov V.M., Kravchenko A.A., Ivanov A.I., Wohlgemuth-Ueberwasse C. Petrology and geochemistry of the late Mesozoic Dzheltula alkaline igneous complex, Aldan–Stanovoy Shield, Russia: constraints on derivation from the ancient enriched mantle source // International Journal of Earth Sciences. - 2020. - ISSN 1437-3254.
Идентиф-ры: DOI: 10.1007/s00531-020-01909-6; РИНЦ: 45433808; SCOPUS: 2-s2.0-85088311974;
Реферат: eng: Petrological, whole-rock major and trace element, and Sr–Nd–Pb isotopic data are reported for the late Mesozoic Dzheltula alkaline igneous complex in the Aldan–Stanovoy Shield, Russia. The alkaline rocks are emplaced into the Tyrkanda mélange zone. The Dzheltula complex consists of monzonites, foid monzonites, and alkaline syenites; granite dykes intrude the complex. All alkaline rocks have high LILE contents (e.g., Ba and Sr), high light REE/HFSE ratios, strongly fractionated REE patterns, and typically lack Eu anomalies. Granite shows different major and trace-element characteristics in comparison to monzonites and syenites. The major and trace-element characteristics of the Dzheltula complex rocks and minerals are consistent with formation by combined assimilation and fractionation processes of an alkaline parental magma of lamproitic composition. The alkaline rocks have moderately radiogenic Sr (87Sr/86Sr(t) = 0.7057–0.7065) and unradiogenic Nd (ɛNd(t) = − 11.3 to − 15.2) and Pb (206Pb/204Pb = 17.17–17.26); granite has more enriched 87Sr/86Sr(t) value (0.707408) but similar ɛNd(t) = − 12.93 The trace element and Sr–Nd–Pb isotopic data for the Dzheltula complex indicate its mantle source experienced ancient metasomatic enrichment, probably associated with subduction. © 2020, Geologische Vereinigung e.V. (GV).
Ключевые слова: Mantle source; Late mesozoic potassic magmatism; Isotope geochemistry; Foid monzonite–syenite suite; Assimilation; Fractionation; Primary melt;
Издано: 2020
Цитирование: 1. Arzamastsev AA, Bea F, Glaznev VN, Arzamastseva LV, Montero P (2001) Kola alkaline province in the Paleozoic: evaluation of primary mantle magma composition and magma generation conditions. Russ J Earth Sci 3:1–32
2. Belousova EA, Griffin WL, O’Reilly SY, Fisher NJ (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622
3. Bilibin YuA (1959) Some interesting features of the Aldan metallogeny. Selected works by Yu.A. Bilibina, vol 2. AN SSSR, Moscow, pp 344–347 (in Russian)
4. Biryukov VM (1997) Magmatic complexes of linear and concentric type. Vladivostok, Dalnauka (in Russian)
5. Bogatikov VA, Machotkin IL, Kononova VA (1985) Lamproites and their place in the systematics of high-magnesium potassic rocks. Proc Russ Acad Sci 12:3–10
6. Bogatikov OA, Kononova VA, Pervov VA, Zhuravlev DZ (1994) Petrogenesis of Mesozoic Potassic Magmatism of the Central Aldan: a Sr-Nd isotopic and geodynamic model. Int Geol Rev 36(7):629–644. 10.1080/00206819409465479 DOI: 10.1080/00206819409465479
7. Borisenko AS, Gas’kov IV, Dashkevich EG, Okrugin AM, Ponomarchuk AV, Travin AV (2011) Geochronology of magmatic processes and ore-formation in the Central Aldan Gold-Ore Region. In: Gladkochub DP, Donskaya TV (eds) Large igneous provinces of Asia: mantle plumes and metallogeny (abstract volume), Petrographica, Irkutsk. Springer, New York, pp 38–39
8. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273(1–2):48–57
9. Brey G (1978) Origin of olivine melilitites—chemical and experimental constraints. J Volcanol Geotherm Res 3:61–88
10. Bultitude RJ, Green DH (1967) Experimental study at high pressures on the origin of olivine nephelinite and olivine melilite nephelinite magmas. Earth Planet Sci Lett 3:325–337
11. Chayka IF, Izokh AE (2016) The rocks of Inagli complex (central Aldan) as cumulates of lamproite melt. In: Kogarko LN (ed) Alkaline magmatism of the earth and related strategic metal deposits. GEOKHI RAS, Moscow, pp 141–143 (in Russian)
12. Chayka IF, Izokh AE (2018) Dunites of the Inagli massif (Central Aldan), cumulates of lamproitic magma. Russ Geol Geophys 59(11):1450–1460
13. Chayka IF, Izokh AE, Sobolev AV, Batanova VG (2018) Low-Titanium lamproites of the Ryabinoviy massif (Aldan Shield): crystallization conditions and lithospheric source. Dokl Earth Sci 481(2):1008–1012
14. Davies GR, Stolz AJ, Mahotkin IL, Nowell GM, Pearson DG (2006) Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites. J Petrol 47(6):1119–1146
15. Doroshkevich AG, Prokopyev IR, Izokh AE, Klemd R, Ponomarchuk AV, Nikolaeva IV, Vladykin NV (2018) Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): insights regarding the mantle evolution beneath the Aldan-Stanovoy shield. J Asian Earth Sci 154:354–368
16. Dvornik GP (2009) Sericite-microcline metasomatites and gold mineralization of the Ryabinovsky ore field (Aldan Shield). Litosfera 2:56–66 (in Russian)
17. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134
18. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci Rev 24:81–134
19. Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49:1955–1969
20. Frost BR, Avchenko OV, Chamberlain KR, Frost CD (1998) Evidence for extensive Proterozoic remobilization of the Aldan shield and implications for Proterozoic plate tectonic reconstructions of Siberia and Laurentia. Precambr Res 89:1–23. 10.1016/s0301-9268(97)00074-0 DOI: 10.1016/s0301-9268(97)00074-0
21. Galer SJG, Abouchami W (1998) Practical application of lead triple spiking for correction of instrumental mass discrimination. Mineral Mag 62A:491–492
22. Goldstein SJ, Jacobsen SB (1988) Nd and Sr isotopic systematics of river water suspended material implications for crystal evolution. Earth Planet Sci Lett 87(3):249–265
23. Gongalsky BI, Sukhanov MK, Goltzman YuV (2008) Sm-Nd system of Chiney anorthozite-gabbro-norithe pluton (East Transbaikalia). Problems of ore geology deposits, mineralogy, petrology and geochemistry. IGEM RAS, Moscow, pp 57–60
24. Green DH (1970) A review of experimental evidence on the origin of basaltic and nephelinitic magmas. Phys Earth Planet Inter 3:221–235
25. Gupta AK (2015) Origin of Potassium-rich Silica-deficient Igneous Rocks. Springer, New Delhi. 10.1007/978-81-322-2083-1 DOI: 10.1007/978-81-322-2083-1
26. Hart SR (1984) A large-scale anomaly in the Southern Hemisphere mantle. Nature 309:753–757
27. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Miner Geochem 53:27–62
28. Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160:359–381
29. Kazansky VI (2004) The unique Central Aldan gold-uranium ore district (Russia). Geol Ore Deposits 46(3):167–181
30. Khomich VG, Boriskina NG, Santosh M (2014) A geodynamic perspective of worldclass gold deposits in East Asia. Gondwana Res 26(3–4):816–833
31. Khomich VG, Boriskina NG, Santosh M (2015) Geodynamics of Late Mesozoic PGE, Au, and U mineralization in the Aldan Shield. North Asian Craton Ore Geol Rev 68:30–42
32. Kochetkov AYa (2006) Mesozoic gold-bearing ore-magmatic systems of Central Aldan. Russ Geol Geophys 47(7):835–846
33. Kogarko LN (1977) Problems of the genesis of agpaitic magmas. Nauka, Moscow (in Russian)
34. Kononova VA, Pervov VA, Bogatikov OA, Myus-Shumaher U, Keller Y (1995) Mesozoic potassic magmatism of Central Aldan: geodynamics and genesis. Geotektonika 3:35–45 (in Russian)
35. Kostyuk VP, Panina LI, Zhidkov AY, Orlova MP, Bazarova TYu (1990) Potassic alkaline magmatism Baikal-Stanovoy rift system. Nauka, Novosibirsk, p 239
36. Kotov A B (2003) Boundary conditions of geodynamic models of the formation of the continental crust of the Aldan Shield, extended abstract of doctoral science (Geol.Mineral.) Dissertation, St. Petersburg: SPbGU
37. Kotov AB, Glebovitskii VA, Kazanskii VI, Sal’nikova EB, Pertsev NN, Kovach VP, Yakovleva SZ (2005) Age Boundaries of the Formation of Major Structures in the Central Aldan Shield. Dokl Akad Nauk 405(8):1155–1158 (Dokl. Earth Sci. (Engl. Transl.), 405 (8), 1155–1158)
38. Kotov AB, Salnikova EB, Glebovitskii VA, Kovach VP, Larin AM, Velikoslavinskii SD, Zagornaya NYu (2006) Sm–Nd Isotopic Provinces of the Aldan Shield. Dokl Akad Nauk 410(1):91–94 (Dokl. Earth Sci. (Engl. Transl.) 410 (7), 1066–1069)
39. Kotov AB, Skovitina TM, Kovach VP, Velikoslavinsky SD, Lopatin DV, Sklyarov EV, Tolmacheva EV, Bobrovskaya OV (2017) New data on continental crust age in the western part of the Aldan Shield: results of Sm–Nd Isotopic Study of the Cenozoic Sand Deposits in the Chara and Tokkin Basins. Doklady Earth Sci 475(1):758–761 (Published in Doklady Akademii Nauk, 2015, Vol. 475, No. 3, pp. 291–294 [in Russian])
40. Kowallis BJ, Christiansen EH, Griffen DT (1997) Compositional variations in titanite. Geol Soc Am Abstracts Programs 29:44
41. Kramm U, Kogarko LN (1994) Nd and Sr isotope signatures of the Khibina und Lovozero agpaitic centres, Kola Alkaline Province, Russia. Lithos 32:225–242
42. Kravchenko AA, Ivanov AI, Prokopyev IR, Zaitsev AI, Bikbaeva EE (2014) Composition and age of the Mesozoic intrusions of the Tyrkanda ore district of the Aldan-Stanovoy shield. Otechestvennaya Geol 5:43–52 (in Russian)
43. Krivenko AP (1980) Mesozoic alkaline picrites of central Aldan. Proc Russ Acad Sci 254(2):465–469
44. Larin AM, Kotov AB, Velikoslavinskii SD (2012) Early precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: sources and geodynamic environments. Petrology 20:218–239. 10.1134/S0869591112030034 DOI: 10.1134/S0869591112030034
45. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Am Miner 82:1019–1037
46. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643
47. Marks MAW, Markl G (2017) A global review on agpaitic rocks. Earth Sci Rev 173:229–258
48. Marks MAW, Schilling J, Coulson IM, Wenzel T, Markl G (2008) The alkaline–peralkaline Tamazeght complex, High Atlas Mountains, Morocco: mineral chemistry and petrological constraints for derivation from a compositionally heterogeneous mantle source. J Petrol 49:1097–1131
49. Marks MAW, Hettmann K, Schilling J, Frost BR, Markl G (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. J Petrol 52:439–455
50. Maximov EP (2003) Mesozoic ore-bearing igneous systems of the Aldan-Stanovoy shield. PhD thesis, Technical Institute (branch) of the Yakutsk State University in Neryungri, Yakutsk, 385 (in Russian)
51. Maximov EP, Uyutov VI, Nikitin VM (2010) The Central Aldan Gold-uranium ore magmatogenic system, Aldan-Stanovoy Shield. Russia Russ J Pac Geol 4(2):95–115
52. Mitchell RH, Smith CB, Vladykin NV (1994) Isotopic composition of strontium and neodymium in potassic rocks of the Little Murun complex, Aldan Shield, Siberia. Lithos 32:243–248
53. Müller D, Groves DI (2019) Potassic igneous rocks and associated gold–copper mineralization. Mineral resource reviews. Springer, Heidelberg. 10.1007/BFb0017712 DOI: 10.1007/BFb0017712
54. Panina LI (1997) Low-titanium Aldan lamproites (Siberia): melt inclusions in minerals. Russ Geol Geophys 38:118–127
55. Parfenov LM (2001) Tectonic evolution of crust in Yakutia in context of geodynamics of the northern part of Pacific and metallogeny. In: Parfenov LM, Kuzmin MI (eds) Tectonics, geodynamics and metallogeny of the Sakha Republic (Yakutia). MAIK Nauka Interperiodica, Moscow, pp 499–511 (in Russian)
56. Parfenov LM, Kuzmin MI (2001) Tectonics, geodynamics and metallogeny of the territory of the Republic of Sakha (Yakutia). Nauka/Interperiodika, Moscow (in Russian)
57. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983
58. Prokopyev IR, Kravchenko AA, Ivanov AI, Borisenko AS, Ponomarchuk AV, Zaitsev AI, Kardash EA, Rozhkov AA (2018) Geochronology and ore mineralization of the Dzheltula alkaline massif (Aldan Shield, South Yakutia). Russ J Pac Geol 12(1):34–45
59. Prokopyev IR, Doroshkevich AG, Ponomarchuk AV, Redina AA, Yegitova IV, Ponomarev JD, Sergeev SA, Kravchenko AA, Ivanov AI, Sokolov EP, Kardash EA, Minakov AV (2019) U-Pb SIMS and Ar-Ar geochronology, petrography, mineralogy and gold mineralization of the late Mesozoic Amga alkaline rocks (Aldan shield, Russia). Ore Geol Rev 109:520–534
60. Rokosova EYu, Panina LI (2013) Shonkinites and minettes of the Ryabinovyi massif (Central Aldan): composition and crystallization conditions. Russ Geol Geophys 54(6):797–814
61. Rokosova EYu, Panina LI, Vasilev YuR, Lesnov FP (2016) Conditions of crystallization of olivine shonkinites in the Inagli massif (Central Aldan). Russ Geol Geophys 57(9):1653–1670
62. Rosen OM, Serenko VP, Spetsius ZV, Manakov AV, Zinchuk NN (2002) Yakutian Kimberlite Province: position in the structure of the Siberian craton and composition of the upper and lower crust. Russ Geol Geophys 43:1–24
63. Smelov AP, Zedgenizov AN, Timofeev VF (2001) Basement of North Asian craton: Aldan-Stanovoy shield. In: Parfenov LM, Kuzmin MI (eds) Tectonics, geodynamics and metallogeny of the Sakha Republic (Yakutia). MAIK Nauka Interperiodica, Moscow, pp 81–100 (in Russian)
64. Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42:999–1018
65. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345
66. Vasyukova EA, Ponomarchuk AV, Doroshkevich AG (2019) Petrological and geochemical characteristics and age of Yllymakh rocks (Aldan Shield, Southern Yakutia). Russ Geol Geophys 61:396–411
67. Velikoslavinskii SD, Kotov AB, Tolmacheva EV et al (2011) Early Precambrian granite-gneiss complexes in the Central Aldan Shield. Petrology 19:382–398. 10.1134/S0869591111040060 DOI: 10.1134/S0869591111040060
68. Vetluzhskikh VG, Kazanskii VI, Kochetkov AY, Yanovskii VM (2002) Central Aldan gold deposits. Geol Ore Deposits 44(6):405–434
69. Vladykin NV (1997) Geochemistry and genesis of lamproites of the Aldan Shield. Russ Geol Geophys 38:128–141
70. Vladykin NV (2016) Genesis and crystallization of ultramafic alkaline carbonatite magmas of Siberia: ore potential, mantle sources, and relationship with plume activity. Russ Geol Geophys 57(5):889–905
71. Vladykin NV, Radomskaja TA (2018) Potassium alkaline magmatic system: differentiation from ultrabasic rocks to granite. In: Mongush AA (ed) Geology, magmatism and metallogeny of central Asia: ore-magmatic systems of the Sangilen (alkaline intrusives, carbonatites), Kyzyl TuvIENR SB RAS. Elsevier, Amsterdam, pp 15–22
72. Vladykin NV, Morikyo T, Miuazaki T (2005) Geochemistry of Sr and Nd isotopes in the carbonatites of Siberia and Mongolia and some geodynamic implications. In: Vladykin NV (ed) Deep-seated magmatizm, its sources and their relation to plume processes, Irkutsk. Springer, New York, pp 89–107