Инд. авторы: Nikolenko A.M., Doroshkevich A.G., Ponomarchuk A.V., Redina A.A., Prokopyev I.R, Vladykin N.V., Nikolaeva I.V.
Заглавие: Ar-Ar geochronology and petrogenesis of the Mushgai–Khudag alkaline‑carbonatite complex (southern Mongolia)
Библ. ссылка: Nikolenko A.M., Doroshkevich A.G., Ponomarchuk A.V., Redina A.A., Prokopyev I.R, Vladykin N.V., Nikolaeva I.V. Ar-Ar geochronology and petrogenesis of the Mushgai–Khudag alkaline‑carbonatite complex (southern Mongolia) // Lithos. - 2020. - Vol.372-373. - Art.105675. - ISSN 0024-4937. - EISSN 1872-6143.
Идентиф-ры: DOI: 10.1016/j.lithos.2020.105675; РИНЦ: 45506043; SCOPUS: 2-s2.0-85088009442; WoS: 000571822700013;
Реферат: eng: The Mushgai-Khudag alkaline‑carbonatite complex, located in southern Mongolia within the Central Asian Orogenic Belt (CAOB), comprises a broad range of volcanic and subvolcanic alkaline silicate rocks (melanephelinite-trachyte and shonkinite-alkaline syenite, respectively). Magnetite-apatite rocks, carbonatites, and fluorite mineralization are also manifested in this area. The complex formed between 145 and 133 Ma and is contemporaneous with late Mesozoic alkaline–carbonatite magmatism within the CAOB. Major and trace element characteristics of silicate rocks in the Mushgai-Khudag complex imply that these rocks were formed by the fractional crystallization of alkaline ultramafic parental magma. Magnetite-apatite rocks may be a product of silicate-Ca-Fe-P liquid immiscibility that took place during the alkaline syenite crystallization stage. The Mushgai-Khudag rocks have variable and moderately radiogenic Sr (87Sr/86Sr(i) = 0.70532–0.70614), ƐNd(t) = −1.23 to 1.25) isotopic compositions. LILE/HFSE values and Sr[sbnd]Nd isotope compositions indicate that the parental melts of Mushgai-Khudag were derived from a lithospheric mantle source that was affected by a metasomatic agent in the form a mixture of subducted oceanic crust and its sedimentary components. The δ18OSMOW and δ18CPDB values for calcites in carbonatites range from 16.8‰ to 19.2‰ and from −3.9‰ to 2.0‰, respectively. C[sbnd]O covariations in calcites of the Mushgai-Khudag carbonatites can be explained by the slight host limestone assimilation. © 2020 Elsevier B.V.
Ключевые слова: volcanic rock; petrogenesis; orogenic belt; mineralization; mantle source; magmatism; carbonatite; argon-argon dating; Petrogenesis; Mantle sources; Late Mesozoic alkaline magmatism; Central Asian Orogenic Belt; Alkaline‑carbonatite complexes; fractional crystallization; Mongolia;
Издано: 2020
Физ. хар-ка: 105675
Цитирование: 1. Alt, J.C., Schwarzenbach, E.M., Früh-Green, G.L., Shanks, W.C. III, Bernasconi, S.M., Garrido, C.J., Marchesi, C., The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178 (2013), 40–54.
2. Andreeva, I.A., Kovalenko, V.I., Magma compositions and genesis of the rocks of the Mushugai-Khuduk carbonatite-bearing alkaline complex (southern Mongolia): evidence from melt inclusions. Periodico di Mineralogia 72 (2003), 95–105.
3. Arzamastsev, A.A., Arzamastseva, L.V., Geochemical indicators of the evolution of the ultrabasic-alkaline series of Paleozoic massifs of the Fennoscandian shield. Petrology 21:3 (2013), 249–279, 10.1134/S0869591113020021.
4. Baatar, M., Ochir, G., Kynicky, J., Iizumi, S., Comin-Chiaramonti, P., Some notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu Alkaline Complexes, Southern Mongolia. Int. J. Geosci. 4:8 (2013), 1200–1214, 10.4236/ijg.2013.48114.
5. Badarch, G., Cunningham, W.D., Windley, B.F., A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 21:1 (2002), 87–110, 10.1016/S1367-9120(02)00017-2.
6. Baksi, A.K., Archibald, D.A., Farrar, E., Intercalibration of 40Ar/39Ar dating standards. Chem. Geol. 129:3–4 (1996), 307–324.
7. Bolonin, A.V., Carbonatite complex ores of Central Tuva and the prospects for their development. Ores Metals 6 (2007), 16–26 (in Russian).
8. Bouvier, A., Vervoort, J.D., Patchett, P.J., The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273:1–2 (2008), 48–57.
9. Chacko, T., Mayeda, T.K., Clayton, R.N., Goldsmith, J.R., Oxygen and carbon isotope fractionation between CO2 and calcite. Geochim. Cosmochim. Acta 55 (1991), 2867–2882.
10. Dash, B., Yin, A., Jiang, N., Tseveendorj, B., Han, B., Petrology, structural setting, timing, and geochemistry of cretaceous volcanic rocks in eastern Mongolia: constraints on their tectonic origin. Gondw. Res. 27:1 (2015), 281–299.
11. Dawson, J.B., Smith, J.V., Steele, I.M., Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. J. Petrol. 36:3 (1995), 797–826, 10.1093/petrology/36.3.797.
12. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., Ivanov, A.V., Late Paleozoic–Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J. Asian Earth Sci. 62 (2013), 79–97.
13. Doroshkevich, A.G., Petrology of Carbonatite and Carbonate-Containing Alkaline Rock Complexes in Western Transbaikalia. PhD Thesis [in Russian], 2013, GIN SB RAS, Ulan-Ude.
14. Doroshkevich, A.G., Ripp, G.S., Estimation of the conditions of formation of REE-carbonatites in Western Transbaikalia. Russ. Geol. Geophys. 45:4 (2004), 492–500, 10.3749/canmin.46.4.807.
15. Doroshkevich, A.G., Ripp, G.S., Moore, K.R., Genesis of the Khaluta alkaline-basic Ba-Sr carbonatite complex (West Transbaikala, Russia). Mineral. Petrol. 98:1–4 (2010), 245–268, 10.1007/s00710-009-0063-4.
16. Doroshkevich, A.G., Ripp, G.S., Izbrodin, I.A., Savatenkov, V.M., Alkaline magmatizm of the Vitim province, West Transbaikalia, Russia: age, mineralogical, geochemical and isotope (О, C, D, Sr, Nd) data. Lithos 152 (2012), 157–172, 10.1016/j.lithos.2012.05.002.
17. Doroshkevich, A.G., Veksler, I.V., Klemd, R., Khromova, E.A., Izbrodin, I.A., Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): implications for the mechanisms of magma evolution and carbonatite formation. Lithos 284 (2017), 91–108, 10.1016/j.lithos.2017.04.003.
18. Doroshkevich, A.G., Izbrodin, I.A., Rampilov, M.O., Ripp, G.S., Lastochkin, E.I., Khubanov, V.B., Permo-Triassic stage of alkaline magmatism in the Vitim plateau (western Transbaikalia). Russ. Geol. Geophys. 59 (2018), 1061–1077, 10.1016/j.rgg.2018.08.001.
19. Doroshkevich, A.G., Chebotarev, D.A., Sharygin, V.V., Prokopyev, I.R., Nikolenko, A.M., Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland, Russia: sources, evolution and relation to the Triassic Siberian LIP. Lithos 332-333 (2019), 245–260, 10.1016/j.lithos.2019.03.006.
20. Egorov, L.S., Ijolite carbonatite plutonism (case history of the Maimecha-Kotui complexes northern Siberia). 1991, Nedra, Leningrad (in Russian).
21. Enkhbayar, D., Seo, J., Choi, S.G., Lee, Y.J., Batmunkh, E., Mineral chemistry of REE-rich apatite and sulfur-rich monazite from the Mushgai Khudag, Alkaline Volcanic-Plutonic complex, South Mongolia. Int. J. Geosci. 7:1 (2016), 20–31, 10.4236/ijg.2016.71003.
22. Foley, S., Venturelli, G., Green, D.H., Toscani, L., The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci. Rev. 24:2 (1987), 81–134.
23. Gaspar, J.C., Wyllie, P.J., Barium phlogopite from the Jacupiranga carbonatite, Brazil. Am. Mineral. 67:9–10 (1982), 997–1000.
24. Goldstein, S.J., Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material implications for crystal evolution. Earth Planet. Sci. Lett. 87 (1988), 249–265.
25. Grassi, D., Schmidt, M.W., Gunther, D., Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet. Sci. Lett. 327– 328 (2012), 84–96.
26. Hart, S.R., A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971), 1984, 753.
27. Helo, C., Hegner, E., Kröner, A., Badarch, G., Tomurtogoo, O., Windley, B.F., Dulski, P., Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: constraints on arc environments and crustal growth. Chem. Geol. 227:3–4 (2006), 236–257, 10.1016/j.chemgeo.2005.10.003.
28. Hoefs, J., Stable Isotope Geochemistry. 2015, Springer International Publishing AG, Basel, 10.1007/978-3-319-19716-6.
29. Hou, T., Charlier, B., Namur, O., Schütte, P., Schwarz-Schampera, U., Zhang, Z., Holtz, F., Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron-fluorine deposit, South Africa. Geochim. Cosmochim. Acta 203 (2017), 303–322, 10.1016/j.gca.2017.01.025.
30. Hou, T., Charlier, B., Holtz, F., Veksler, I., Zhang, Z., Thomas, R., Namur, O., Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits. Nat. Commun., 9, 2018, 1415, 10.1038/s41467-018-03761-4.
31. Izbrodin I., Doroshkevich A., Rampilov M., R., Elabaev A., Ripp G., 2020. Late Paleozoic alkaline magmatism in Western Transbaikalia, Russia: implications for magma sources and tectonic settings. Geosci. Front. doi: https://doi.org/10.1016/j.gsf.2019.12.009.
32. Javoy, M., Fourcade, S., Allegre, C.J., Graphical method for examination of 18O/16O fractionations in silicate rocks. Earth Planet. Sci. Lett. 10 (1970), 12–16.
33. Khromykh, S.V., Tsygankov, A.A., Kotler, P.D., Navozov, O.V., Kruk, N.N., Vladimirov, A.G., Travin, A.V., Yudin, D.S., Burmakina, G.N., Khubanov, V.B., Buyantuev, M.D., Antsiferova, T.N., Karavaeva, G.S., Late Paleozoic granitoid magmatism of Eastern Kazakhstan and Western Transbaikalia: Plume model test. Russ. Geol. Geophys. 57:5 (2016), 773–789.
34. Kimura, J.-I., Gill, J.B., Skora, S., van Keken, P.E., Kawabata, H., Origin of geochemical mantle components: Role of subduction filter. Geochem. Geophys. Geosyst. 17 (2016), 3289–3325, 10.1002/2016GC006343.
35. Kogarko, L.N., Ryabchikov, I.D., Kuzmin, D.V., High-Ba mica in olivinites of the Guli massif (Maimecha–Kotui province, Siberia). Russ. Geol. Geophys. 53:11 (2012), 1209–1215.
36. Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Kotov, A.B., Kozakov, I.K., Salnikova, E.B., Larin, A.M., Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. J. Asian Earth Sci. 23:5 (2004), 605–627, 10.1016/S1367-9120(03)00130-5.
37. Kuleshov, V.N., Isotopic Composition and Origin of Deep-Seated Carbonates. 1986, Nauka, Moscow, 122.
38. Kuzmin, M.I., Yarmolyuk, V.V., Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russ. Geol. Geophys. 55:2 (2014), 120–143, 10.1016/j.rgg.2014.01.002.
39. Kynický, J., Samec, P., Hydrothermally-metasomatic and exsolution-like mineralization of the carbonatites from the selected localities at Gobi. Mongolian Geosci. 27 (2005), 52–56.
40. Lavrenchuk, A.V., Sklyarov, E.V., Izokh, A.E., Kotov, A.B., Sal'nikova, E.B., Fedorovsky, V.S., Mazukabzov, A.M., Compositions of gabbro intrusions in the Krestovsky zone (western Baikal region): a record of plume-suprasubduction mantle interaction. Russ. Geol. Geophys. 58:10 (2017), 1139–1153, 10.1016/j.rgg.2017.09.001.
41. Le Bas, M.J., Nephelinitic and basanitic rocks. J. Petrol. 30:5 (1989), 1299–1312, 10.1093/petrology/30.5.1299.
42. Le Maitre, R.W., Igneous Rocks: A Classification and Glossary of Terms. 2002, Cambridge University Press, Cambridge, U.K.
43. Li, S., Wang, T., Wilde, S.A., Tong, Y., Evolution, source and tectonic significance of early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Sci. Rev. 126 (2013), 206–234, 10.1016/j.earscirev.2013.06.001.
44. Li, S.Q., Hegner, E., Yang, Y.Z., Wu, J.D., Chen, F., Age constraints on late Mesozoic lithospheric extension and origin of bimodal volcanic rocks from the Hailar basin, NE China. Lithos 190 (2014), 204–219, 10.1016/j.lithos.2013.12.009.
45. Marks, M.A., Coulson, I.M., Schilling, J., Jacob, D.E., Schmitt, A.K., Markl, G., The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chem. Geol. 257:1–2 (2008), 153–172, 10.1016/j.chemgeo.2008.09.002.
46. Mazukabzov, A.M., Donskaya, T.V., Gladkochub, D.P., Paderin, I.P., The late Paleozoic geodynamics of the West Transbaikalian segment of the Central Asian fold belt. Russ. Geol. Geophys. 51:5 (2010), 482–491, 10.1016/j.rgg.2010.04.008.
47. Nikiforov, A.V., Yarmolyuk, V.V., Late Mesozoic carbonatite provinces in Central Asia: their compositions, sources and genetic settings. Gondw. Res. 69 (2019), 56–72.
48. Nikiforov, A.V., Bolonin, A.V., Chugaev, A.V., Lykhin, D.A., Pokrovsky, B.G., Sugorakova, A.M., Isotope geochemistry (O, C, S, Sr) and Rb-Sr age of carbonatites in Central Tuva. Geol. Ore Deposits 48:4 (2006), 256–276, 10.1134/S1075701506040027.
49. Nikolenko, A.M., Redina, A.A., Doroshkevich, A.G., Prokopyev, I.R., Ragozin, A.L., Vladykin, N.V., The origin of magnetite-apatite rocks of Mushgai-Khudag complex, South Mongolia: mineral chemistry and studies of melt and fluid inclusions. Lithos 320-321 (2018), 567–582, 10.1016/j.lithos.2018.08.030.
50. Pearce, J.A., Role of the Sub-continental Lithosphere in Magma Genesis at active Continental margins. Hawkesworth, C.J., Norry, M.J., (eds.) Continental Basalts and Mantle Xenoliths, 1983, 230–249 Shiva. Cheshire, UK.
51. Peccerillo, A., Cenozoic Volcanism in the Tyrrhenian Sea Region. Advances in Volcanology, 2017, Springer Nature 395 р.
52. Prokopyev, I.R., Borisenko, A.S., Borovikov, A.A., Pavlova, G.G., Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions. Mineral. Petrol. 110:6 (2016), 845–859, 10.1007/s00710-016-0449-z.
53. Ray, J.S., Ramesh, R., Rayleigh fractionation of stable isotopes from a multicomponent source. Geochim. Cosmochim. Acta 64:2 (2000), 299–306.
54. Ringwood, A.E., Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem. Geol. 82 (1990), 187–207.
55. Ripp, G.S., Doroshkevich, A.G., Posokhov, V.F., Age of carbonatite magmatism in Transbaikalia. Petrology 17:1 (2009), 73–89, 10.1134/S0869591109010044.
56. Rudnick, R.L., Gao, S., Composition of the continental crust. Earth systems and environmental sciences. Treatise on geochemistry, Second edition, vol. 4, 2014, 1–51.
57. Sal'nikova, E.B., Yakovleva, S.Z., Nikiforov, A.V., Kotov, A.B., Yarmolyuk, V.V., Anisimova, I.V., Plotkina, Y.V., Bastnaesite: a promising U-Pb geochronological tool. Doklady Earth Sci. 430:1 (2010), 134–136, 10.1134/S1028334X10010290.
58. Samoilov, V.S., Kovalenko, V.I., Complexes of Alkaline Rocks and Carbonatites in South Mongolia. 1983, Nauka, Moscow (in Russian).
59. Schmidt, M.W., Vielzeuf, D., Auzanneau, E., Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 228:1–2 (2004), 65–84.
60. Sharp, Z.D., A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 54 (1990), 1353–1357, 10.1016/0016-7037(90)90160-M.
61. Sheldrick, T.C., Barry, T.L., Van Hinsbergen, D.J., Kempton, P.D., Constraining lithospheric removal and asthenospheric input to melts in Central Asia: a geochemical study of Triassic to cretaceous magmatic rocks in the Gobi Altai (Mongolia). Lithos 296 (2018), 297–315.
62. Taylor, H.P. Jr., Water/rock interaction and the origin of H2O in granitic batholiths. J. Geol. Soc. 133 (1977), 509–558.
63. Taylor, H.P. Jr., Sheppard, S.M.F., Magmatic rocks: I. Processes of isotopic fractionation and isotope systematics. Rev. Mineral. 16 (1986), 227–271.
64. Thompson, R.N., Primary basalts and magma genesis. 3. Alban Hills, Roman Comagmatic province, Central Italy. Contrib. Mineral. Petrol. 60:1 (1977), 91–108.
65. Valley, J.W., Bindeman, I.N., Peck, W.H., Empirical calibration of oxygen isotope fractionation in zircon. Geochim. Cosmochim. Acta 67:17 (2003), 3257–3266.
66. Veksler, I.V., Teptelev, M.P., Conditions for crystallization and concentration of perovskite-type minerals in alkaline magmas. Lithos 26:1–2 (1990), 177–189, 10.1016/0024-4937(90)90047-5.
67. Veksler, I.V., Nielsen, T.F.D., Sokolov, S.V., Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J. Petrol. 39:11−12 (1998), 2015–2031, 10.1093/petroj/39.11-12.2015.
68. Vladykin, N.V., Geochemistry of Sr and Nd isotopes of alkaline and carbonatite complexes in Siberia and Mongolia; some geodynamic implications. Problemy istochnikov glubinnogo magmatizma i plyumy, 2005, 13–29 (in Russian).
69. Vladykin, N.V., Petrology and composition of rare-metal alkaline rocks in the South Gobi Desert (Mongolia). Russ. Geol. Geophys. 54:4 (2013), 545–568, 10.1016/j.rgg.2013.03.00.
70. Vorontsov, A.A., Yarmolyuk, V.V., Northern-Mongolian-Transbaikalian polychronic rifting system (formation stages, magmatism, melt sources, geodynamics). Litospere 3 (2004), 17–32 (in Russian).
71. Vrublevskii, V.V., Petrology of Carbonatite Complexes in Consolidated Folded Areas (by the Example of Southern Siberia and the Tien Shan). 2003 (ScD Thesis. Novosibirsk).
72. Vrublevskii, V.V., Gertner, I.F., Tishin, P.A., Bayanova, T.B., Zircon age range and sources of alkaline rocks from the Kurgusul intrusion, Kuznetsk Alatau: the first U-Pb (SHRIMP II) and Sm-Nd isotope data. Doklady Earth Sci. 459:2 (2014), 1576–1581, 10.1134/S1028334X1412023X.
73. Vrublevskii, V.V., Nikiforov, A.V., Sugorakova, A.M., Kozulina, T.V., Petrogenesis and tectonic setting of the Cambrian Kharly alkaline–carbonatite complex (Sangilen Plateau, Southern Siberia): Implications for the early Paleozoic evolution of magmatism in the western Central Asian Orogenic Belt. J. Asian Earth Sci., 188, 2020, 104163, 10.1016/j.jseaes.2019.104163.
74. Vrublevsky, V.V., Gertner, I.F., Voitenko, D.N., Vladimirov, A.G., Rudnev, S.N., Borisov, S.M., Levchenkov, O.A., Geochronological boundaries and geodynamic interpretation of alkaline-mafic magmatism in Kuznetsk Alatau. Doklady Earth Sci. 398:7 (2004), 990–994.
75. Xiao, W., Windley, B.F., Sun, S., Li, J., Huang, B., Han, C., Chen, H., A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 43 (2015), 477–507.
76. Xiao, W., Windley, B.F., Han, C., Liu, W., Wan, B., Zhang, J.E., Song, D., Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Sci. Rev. 186 (2018), 94–128.
77. Yarmolyuk, V.V., Kovalenko, V.I., Deep Geodynamics and Mantle Plumes: their Role in the Formation of the Central Asian Fold Belt. Petrology 11:6 (2003), 504–531.
78. Yarmolyuk, V.V., Kovalenko, V.I., Kotov, A.B., Sal'nikova, E.B., The Angara–Vitim batholith: the problem of geodynamics of batholith formation in the Central Asian fold belt. Geotektonika 31:5 (1997), 18–32.
79. Zheng, Y.F., Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 33 (1999), 109–126.
80. Zhou, X.M., Li, W.X., Origin of late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326:3–4 (2000), 269–287, 10.1016/S0040-1951(00)00120-7.
81. Zhou, B.X., Sun, T., Shen, W., Shu, L., Niu, Y., Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes, 29(1), 2006, 26.
82. Zindler, A., Hart, S., Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14:1 (1986), 493–571.