Инд. авторы: Sokol A., Tomilenko A., Sokol I., Zaikin P., Bul’bak T.A
Заглавие: Formation of hydrocarbons in the presence of native iron under upper mantle conditions: Experimental constraints
Библ. ссылка: Sokol A., Tomilenko A., Sokol I., Zaikin P., Bul’bak T.A Formation of hydrocarbons in the presence of native iron under upper mantle conditions: Experimental constraints // Minerals. - 2020. - Vol.10. - Iss. 2. - Art.88. - ISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min10020088; РИНЦ: 42599000; РИНЦ: 43235211; SCOPUS: 2-s2.0-85078801667; WoS: 000522452900003;
Реферат: eng: The formation of hydrocarbons (HCs) upon interaction of metal and metal–carbon phases (solid Fe, Fe3C, Fe7C3, Ni, and liquid Fe–Ni alloys) with or without additional sources of carbon (graphite, diamond, carbonate, and H2O–CO2 fluids) was investigated in quenching experiments at 6.3 GPa and 1000–1400 °C, wherein hydrogen fugacity (fH2) was controlled by the Fe–FeO + H2O or Mo–MoO2 + H2O equilibria. The aim of the study was to investigate abiotic generation of hydrocarbons and to characterize the diversity of HC species that form in the presence of Fe/Ni metal phases at P–T–fH2 conditions typical of the upper mantle. The carbon donors were not fully depleted at experimental conditions. The ratio of H2 ingress and consumption rates depended on hydrogen permeability of the capsule material: runs with low-permeable Au capsules and/or high hydrogenation rates (H2O–CO2 fluid) yielded fluids equilibrated with the final assemblage of solid phases at fH2sample ≤ fH2buffer. The synthesized quenched fluids contained diverse HC species, predominantly light alkanes. The relative percentages of light alkane species were greater in higher temperature runs. At 1200 °C, light alkanes (C1 ≈ C2 > C3 > C4) formed either by direct hydrogenation of Fe3C or Fe7C3, or by hydrogenation of graphite/diamond in the presence of Fe3C, Fe7C3, and a liquid Fe–Ni alloy. The CH4/C2H6 ratio in the fluids decreased from 5 to 0.5 with decreasing iron activity and the C fraction increased in the series: Fe–Fe3C → Fe3C–Fe7C3 → Fe7C3–graphite → graphite. Fe3C–magnesite and Fe3C–H2O–CO2 systems at 1200 °C yielded magnesiowüstite and wüstite, respectively, and both produced C-enriched carbide Fe7C3 and mainly light alkanes (C1 ≈ C2 > C3 > C4). Thus, reactions of metal phases that simulate the composition of native iron with various carbon donors (graphite, diamond, carbonate, or H2O–CO2 fluid) at the upper mantle P–T conditions and enhanced fH2 can provide abiotic generation of complex hydrocarbon systems that predominantly contain light alkanes. The conditions favorable for HC formation exist in mantle zones, where slab-derived H2O-, CO2-and carbonate-bearing fluids interact with metal-saturated mantle. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Ключевые слова: Fluid; Gas chromatography; Hydrocarbons; Subduction; Native iron; Mass spectrometry; Mantle; Experiment;
Издано: 2020
Физ. хар-ка: 88
Цитирование: 1. Horita, J.; Berndt, M.E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 1999, 285, 1055-1057.
2. Etiope, G.; Schoell, M.; Hosgormez, H. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Planet. Sci. Lett. 2011, 310, 96-104.
3. Chukanov, N.V.; Pekov, I.V.; Sokolov, S.V.; Nekrasov, A.N.; Chukanova, V.N.; Naumova, I.S. On the problem of the formation and geochemical role of bituminous matter in pegmatites of the Khibiny and Lovozero alkaline massifs, Kola Peninsula, Russia. Geochem. Int. 2006, 44, 715-728.
4. Sobolev, N.V.; Sobolev, A.V.; Tomilenko, A.A.; Kuz'min, D.V.; Grakhanov, S.A.; Batanova, V.G.; Logvinova, A.M.; Bul'bak, T.A.; Kostrovitskii, S.I.; Yakovlev, D.A.; et al. Prospects of search for diamondiferous kimberlites in the northeastern Siberian. Platform. Russ. Geol. Geophys. 2018, 59, 1365-1379.
5. Sobolev, N.V.; Tomilenko, A.A.; Bul'bak, T.A.; Logvinova, A.M. Composition of volatile components in the diamonds, associated garnet and olivine from diamondiferous peridotites from the Udachnaya pipe, Yakutia, Russia (by coupled gas chromatographic-mass spectrometric analysis). Engineering 2019, 5.
6. Sobolev, N.V.; Logvinova, A.M.; Tomilenko, A.A.; Wirth, R.; Bul'bak, T.A.; Luk'yanova, L.I.; Fedorova, E.N.; Reutsky, V.N.; Efimova, E.S. Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochim. Cosmochim. Acta 2019, 266, 197-219.
7. Smith, E.M.; Shirey, S.B.; Nestola, F.; Bullock, E.S.;Wang, J.; Richardson, S.H.;Wang,W. Large gem diamonds from metallic liquid in Earth's deep mantle. Science 2016, 354, 1403-1405.
8. Yuen, G.; Blair, N.; Des Marais, D.J.; Chang, S. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 1984, 307, 252-254.
9. Mumma, M.J.; Villanueva, G.L.; Novak, R.E.; Hewagama, T.; Bonev, B.P.; DiSanti, M.A.; Mandell, A.M.; Smith, M.D. Strong release of methane on Mars in northern summer 2003. Science 2009, 323, 1041-1045.
10. Etiope, G.; Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 2013, 51, 276-299.
11. Foley, S. A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 2011, 52, 1363-1391.
12. Luth, R.W. Volatiles in Earth's mantle. In Treatise on Geochemistry; Elsevier: Oxford, UK, 2014; Volume 3, pp. 355-391.
13. Stagno, V.; Ojwang, D.O.; McCammon, C.A.; Frost, D.J. The oxidation state of the mantle and the extraction. Nature 2013, 493, 84.
14. Stachel, T.; Luth, R.W. Diamond formation-Where, when and how? Lithos 2015, 220, 200-220.
15. Stagno, V.; Cerantola, V.; Aulbach, S.; Lobanov, S.; McCammon, C.A.; Merlini, M. Carbon-bearing phases throughout Earth's interior-Evolution through space and time. In Deep Carbon: Past to Present; Orcutt, B., Daniel, I., Dasgupta, R., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 66-88.
16. Kenney, J.F.; Kutcherov, V.G.; Bendeliani, N.A.; Alekseev, V.A. The evolution of multicomponent systems at high pressures: The thermodynamic stability of the hydrogen-carbon system: The genesis of hydrocarbons and the origin of petroleum. Proc. Nat. Acad. Sci. USA 2002, 99, 10976-10981.
17. Scott, H.P.; Hemley, R.J.; Mao, H.; Herschbach, D.R.; Fried, L.E.; Howard, W.M.; Bastea, S. Generation of methane in the Earth's mantle: In situ high pressure-temperature measurements of carbonate reduction. Proc. Nat. Acad. Sci. USA 2004, 101, 14023-14026.
18. Sharma, A.; Cody, G.D.; Hemley, R.J. In situ diamond-anvil cell observations of methanogenesis at high pressures and temperatures. Energy Fuels 2009, 23, 5571-5579.
19. Kolesnikov, A.; Kutcherov, V.G.; Goncharov, A.F. Methane-derived hydrocarbons produced under upper-mantle conditions. Nat. Geosci. 2009, 2, 566-570.
20. Palyanov, Y.N.; Borzdov, Y.M.; Kupriyanov, I.N.; Khokhryakov, A.F. E_ect of H2O on diamond crystal growth in metal-carbon systems. Cryst. Growth Des. 2010, 12, 5571-5578.
21. Kolesnikov, A.Y.; Saul, J.M.; Kutcherov, V.G. Chemistry of hydrocarbons under extreme thermobaric conditions. Chem. Sel. 2017, 2, 1336-1352.
22. Mukhina, E.; Kolesnikov, A.; Kutcherov, V. The lower pT limit of deep hydrocarbon synthesis by CaCO3 aqueous reduction. Sci. Rep. 2017, 7, 5749.
23. Tao, R.; Zhang, L.; Tian, M.; Zhu, J.; Liu, X.; Liu, J.; Höfer, H.E.; Stagno, V.; Fei, Y. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochim. Cosmochim. Acta 2018, 239, 390-408.
24. Matveev, S.; Ballhaus, C.; Fricke, K.; Truckenbrodt, J.; Ziegenben, D. Volatiles in the Earth's mantle: I. Synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim. Cosmochim. Acta 1997, 61, 3081-3088.
25. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Sokol, I.A.; Zaikin, P.A.; Palyanova, G.A.; Palyanov, Y.N. Hydrogenation of carbon at 5.5-7.8 GPa and 1100-1400 _C: Implications to formation of hydrocarbons in reduced mantles of terrestrial planets. Phys. Earth Planet. Inter. 2019, 291, 12-23.
26. Lobanov, S.S.; Chen, P.N.; Chen, X.J.; Zha, C.S.; Litasov, K.D.; Mao, H.K.; Goncharov, A.F. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun. 2013, 4, 2446.
27. Frost, D.J.; Liebske, C.; Langenhorst, F.; McCammon, C.A.; Tronnes, R.G.; Rubie, D.C. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 2004, 248, 409-412.
28. Frost, D.J.; McCammon, C.A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 2008, 36, 389-420.
29. Ohtani, E.Water in the mantle. Elements 2005, 1, 25-30.
30. Manning, C.E. Thermodynamic modeling of fluid-rock interaction at mid-crustal to upper-mantle conditions. Rev. Mineral. Geochem. 2013, 76, 135-164.
31. Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 2013, 75, 183-229.
32. Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325-394.
33. Song, S.; Su, L.; Niu, Y.; Lai, Y.; Zhang, L. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim. Cosmochim. Acta 2009, 73, 1737-1754.
34. Rea, D.K.; Ru_, L.J. Composition and mass flux of sediment entering the world's subduction zones: Implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet. Sci. Lett. 1996, 140, 1-12.
35. Schmidt, M.; Poli, S. Devolatilization during subduction. In Treatise on Geochemistry, 2nd ed.; Elsevier Science: Oxford, UK, 2014; pp. 669-701.
36. Stagno, V.; Stopponi, V.; Kono, Y.; Manning, C.; Irifune, T. Experimental determination of the viscosity of Na2CO3 melt between 1.7 and 4.6 GPa at 1200-1700 _C: Implications for the rheology of carbonatite magma in the Earth's upper mantle. Chem. Geol. 2018, 501, 19-25.
37. Pearson, D.G.; Canil, D.; Shirey, S.B. Mantle samples included in volcanic rocks: Xenoliths and diamonds. Treatise Geochem. 2003, 2, 568.
38. Pearson, D.G.; Wittig, N. The Formation and Evolution of Cratonic Mantle Lithosphere-Evidence from Mantle Xenoliths. In Treatise on Geochemistry, 2nd ed.; Elsevier Science: Oxford, UK, 2014; Volume 3, pp. 255-292.
39. Rohrbach, A.; Schmidt, M.W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 2011, 472, 209.
40. Rohrbach, A.; Ghosh, S.; Schmidt, M.W.;Wijbrans, C.H.; Klemme, S. The stability of Fe-Ni carbides in the Earth's mantle: Evidence for a low Fe-Ni-C melt fraction in the deep mantle. Earth Planet. Sci. Lett. 2014, 388, 211-221.
41. Sobolev, N.V.; Efimova, E.S.; Pospelova, L.N. Native iron in Yakutian diamonds and its mineral assemblage. Sov. Geol. Geophys. 1981, 22, 25-28.
42. Stachel, T.; Harris, J.W.; Brey, G.P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Mineral. Petrol. 1998, 132, 34-47.
43. Jacob, D.E.; Kronz, A.; Viljoen, K.S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 2004, 146, 566-576.
44. Kaminsky, F.V.;Wirth, R. Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Canad. Mineral. 2011, 49, 555-572.
45. O'Neill, H.S.C.;Wall, V.J. The Olivine-Orthopyroxene-Spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's Upper Mantle. J. Petrol. 1987, 28, 1169-1191.
46. Sokol, A.G.; Kruk, A.N.; Seryotkin, Y.V.; Korablin, A.A.; Palyanov, Y.N. Phase relations in the Fe-Fe3C-Fe3N system at 7.8 GPa and 1350 _C: Implications for carbon and nitrogen hosts in Fe0-saturated upper mantle. Phys. Earth Planet. Inter. 2017, 265, 43-53.
47. Lord, O.T.;Walter, M.J.; Dasgupta, R.;Walker, D.; Clark, S.M. Melting in the Fe-C system to 70 GPa. Earth Planet. Sci. Lett. 2009, 284, 157-167.
48. Kutcherov, V.G.; Kolesnikov, A.Y.; Dyuzheva, T.I.; Kulikova, L.F.; Nikolaev, N.N.; Sazanova, O.A.; Braghkin, V.V. Synthesis of Complex Hydrocarbon Systems at Temperatures and Pressures Corresponding to the Earth's Upper Mantle Conditions. Dokl. Phys. Chem. 2010, 433, 132-135.
49. Iizuka-Oku, R.; Yagi, T.; Gotou, H.; Okuchi, T.; Hattori, T.; Sano-Furukawa, A. Hydrogenation of iron in the early stage of Earth's evolution. Nat. Commun. 2017, 8, 14096.
50. Palyanov, Y.N.; Bataleva, Y.V.; Sokol, A.G.; Borzdov, Y.M.; Kupriyanov, I.N.; Reutsky, V.N.; Sobolev, N.V. Mantle-slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. USA 2013, 110, 20408-20413.
51. Stagno, V. Carbon, carbides, carbonates and carbonatitic melts in the Earth's interior. J. Geol. Soc. 2019, 176, 375-387.
52. Luth, R.W. Natural versus experimental control of oxidation state: E_ects on the composition and speciation of C-O-H fluids. Am. Mineral. 1989, 74, 50-57.
53. Sokol, A.G.; Palyanova, G.A.; Palyanov, Y.N.; Tomilenko, A.A.; Melenevsky, V.N. Fluid regime and diamond formation in the reduced mantle: Experimental constraints. Geochim. Cosmochim. Acta 2009, 73, 5820-5834.
54. Palyanov, Y.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N.; Sokol, A.G. E_ect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 2010, 10, 3169-3175.
55. Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N.; Khokhryakov, A.F. High-temperature calibration of a multi-anvil high-pressure apparatus. High Press. Res. 2015, 35, 139-147.
56. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Palyanova, G.A.; Sokol, I.A.; Palyanov, Y.N. Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100-1400 _C. Sci. Rep. 2017, 7, 706.
57. Borzdov, Y.; Pal'yanov, Y.; Kupriyanov, I.; Gusev, V.; Khokhryakov, A.; Sokol, A.; Efremov, A. HPHT synthesis of diamond with high nitrogen content from an Fe3N-C system. Diam. Relat. Mater. 2002, 11, 1860-1870.
58. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Kruk, A.N.; Zaikin, P.A.; Sokol, I.A.; Seryotkin, Y.V.; Palyanov, Y.N. The Fe-C-O-H-N system at 6.3-7.8 GPa and 1200-1400 _C: Implications for deep carbon and nitrogen cycles. Contrib. Mineral. Petrol. 2018, 173, 47.
59. Sokol, A.G.; Palyanov, Y.N.; Tomilenko, A.A.; Bul'bak, T.A.; Palyanova, G.A. Carbon and nitrogen speciation in nitrogen-rich C-O-H-N fluids at 5.5-7.8 GPa. Earth Planet. Sci. Lett. 2017, 460, 234-243.
60. Zhang, C.; Duan, Z. A model for C-O-H fluid in the Earth's mantle. Geochim. Cosmochim. Acta 2009, 73, 2089-2102.
61. Bataleva, Y.V.; Palyanov, Y.N.; Borzdov, Y.M.; Bayukov, O.A.; Zdrokov, E.V. Iron carbide as a source of carbon for graphite and diamond formation under lithospheric mantle P-T parameters. Lithos 2017, 286-287, 151-161.
62. Robertson, A.J.B. The Pyrolysis of Methane, Ethane and n-butane on a Platinum Filament. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1949, 199, 394-411.
63. Belgued, M.; Amariglio, A.; Paréja, P.; Amariglio, H. Oxygen-Free conversion of methane to higher alkanes through an isothermal two-step reaction on platinum (EUROPT-1): II. hydrogenation of the adspecies resulting from the chemisorption of methane. J. Catal. 1996, 159, 449-457.
64. Sverjensky, D.A.; Stagno, V.; Huang, F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci. 2014, 7, 909.
65. Cimino, A.; Boudart, M.; Taylor, H. Ethane hydrogenation-cracking on iron catalysts with and without alkali. J. Phys. Chem. 1954, 58, 796-800.
66. Hasterok, D.; Chapman, D.S. Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 2011, 307, 59-70.
67. Syracuse, E.M.; van Keken, P.E.; Abers, G.A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 2010, 183, 73-90.
68. Huizenga, J.M.; Crossingham, A.; Viljoen, F. Diamond precipitation from ascending reduced fluids in the Kaapvaal lithosphere: Thermodynamic constraints. C. R. Geosci. 2012, 344, 67-76.
69. Sokol, A.G.; Tomilenko, A.A.; Bul'bak, T.A.; Kruk, A.N.; Sokol, I.A.; Palyanov, Y.N. Fate of fluids at the base of subcratonic lithosphere: Experimental constraints at 5.5-7.8 GPa and 1150-1350 _C. Lithos 2018, 318, 419-433.
70. Thomassot, E.; Cartigny, P.; Harris, J.W.; (Fanus) Viljoen, K.S. Methane-related diamond crystallization in the Earth's mantle: Stable isotope evidences from a single diamond-bearing xenolith. Earth Planet. Sci. Lett. 2007, 257, 362-371.
71. Shirey, S.B.; Pearson, D.G.;Walter, M.J.; Aulbach, S.; Brenker, F.E.; Bureau, H.; Burnham, A.D.; Cartigny, P.; Chacko, T.; Frost, D.J.; et al. Diamonds and the Mantle Geodynamics of Carbon: Deep Mantle Carbon Evolution from the Diamond Record. In Deep Carbon: Past to Present; Orcutt, B., Daniel, I., Dasgupta, R., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 89-128.
72. Frezzotti, M.L. Diamond growth from organic compounds in hydrous fluids deep within the Earth. Nat. Commun. 2019, 10, 4952.
73. Tappe, S.; Foley, S.F.; Kjarsgaard, B.A.; Romer, R.L.; Heaman, L.M.; Stracke, A.; Jenner, G.A. Between carbonatite and lamproite-Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim. Cosmochim. Acta 2008, 72, 3258-3286.
74. Hernlund, J.; Leinenweber, K.; Locke, D.; Tyburczy, J. A numerical model for steadystate temperature distributions in solid-medium high-pressure cell assemblies. Am. Mineral. 2006, 91, 295-305.