Инд. авторы: Kuibida M.L., Vladimirov A.G., Kruk N.N., Khromykh S.V., Kotler P.D., Rudnev S.N., Kruk E.A, Kuibida Y.V., Dyachkov B.A., Oitseva T.
Заглавие: Contrasting granitic magmatism of the kalba fold belt (east kazakhstan): evidence for late paleozoic post-orogenic events
Библ. ссылка: Kuibida M.L., Vladimirov A.G., Kruk N.N., Khromykh S.V., Kotler P.D., Rudnev S.N., Kruk E.A, Kuibida Y.V., Dyachkov B.A., Oitseva T. Contrasting granitic magmatism of the kalba fold belt (east kazakhstan): evidence for late paleozoic post-orogenic events // Journal of Asian Earth Sciences. - 2019. - ISSN 1367-9120. - EISSN 1878-5786.
Идентиф-ры: DOI: 10.1016/j.jseaes.2018.08.027; РИНЦ: 41791273; РИНЦ: 41791273; РИНЦ: 35755365; SCOPUS: 2-s2.0-85052804269; WoS: 000464298500015;
Реферат: eng: The paper presents new original data and a review of previous studies on the Late Carboniferous – Early Permian granitoids of the Kunush and Kalguty intrusive complexes from the Kalba fold belt (East Kazakhstan). These rocks formed at the initial post-collisional stage of the Irtish-Zaisan orogen in the western Central Asian Orogenic Belt (CAOB). The granitoids form isometric or NW linear intrusions inside the Late Devonian - Early Carboniferous metasediments which overlap the accretionary lithology of the Kalba fold belt in front of the Altai active margin of the Siberian continent. These granitoids contain zircon grains with U-Pb ages of ca.308–291 Ma, synchronous with the peak post-orogenic magmatic event at ~300 Ma in the CAOB. The Kunush high-Na granitoids, with high SiO2 (67–72%) and Al2O3 (15–18%) contents and the Na2O/K2O ratio (1.94–6.43), and low HREEs (Yb = 0.22–0.93 ppm) but moderate Sr/Y ratios (47–179), Mg# (35–55) and Ni, Cr, are generally common to high-Al TTG-series with non-subduction geochemical signatures. The Kalguty granitoids mostly belong to calc-alkalic to subalkalic high-K series, have non-corundum CIPW-norm compositions and mainly weakly peraluminous (ASI = 0.97–1.09) characteristics. Their Fe∗ = 0.7–1 at 62–74 wt.% SiO2 and relatively high Y/Nb (2–4) and Rb/Nb (9–18) ratios are similar to transitional compositions reported for fractionated I- and A2-type post-orogenic granites worldwide. The Kunush high-Na and Kalguty high-K granitoids formed at different depths in the crust and the parent melts were derived from metabasaltic (MORB; P = 10–15 kbar) and metagranitic (TTG-like; P < 10 kbar) protoliths, respectively. We propose that relaxation of tangential compression after oblique collision and the following thermal impact of mafic magma that acted simultaneously at different crustal depths, along with decompressional partial melting, may be a basic petrological scenario for synchronous formation of geochemically different granitoids.
Ключевые слова: Kunush-Kalguty granitoids; Irtysh-Zaisan orogen; Central Asian Orogenic Belt; Hot shear system; Post-collision magmatism;
Издано: 2019
Цитирование: 1. Alonso-Perez, R., Muntener, O., Ulmer, P., Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib. Miner. Petrol. 157 (2009), 541–558.
2. Arth, J.G., Some trace elements in trondhjemites - their implications to magma genesis and paleotectonic setting. Barker, F., (eds.) Trondhjemites, Dacites, and Related Rocks, 1979, Elsevier, Amsterdam, 123–132.
3. Barker, F., Trondhjemites: definition, environment and hypotheses of origin. Barker, F., (eds.) Trondhjemites, Dacites and Related Rocks, 1979, Elsevier, Amsterdam, 1–12.
4. Barnes, C., Petersen, S., Kistler, R., Murray, R., Kays, M., Source and tectonic implication of tonalite-trondhjemite magmatism in the Klamath Mountains. Contrib. Miner. Petrol. 123 (1996), 40–60.
5. Barth, M.G., Foley, S.F., Horn, I., Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambr. Res. 113 (2002), 323–340.
6. Beard, J.S., Lofgren, G.E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J. Petrol. 32 (1991), 365–401.
7. Black, R., Liégeois, J.P., Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. J. Geol. Soc. 150 (1993), 89–98.
8. Briggs, S.M., Yin, A., Manning, C.E., Chen, Z.L., Wang, X.F., Grove, M., Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. Geol. Soc. Am. Bull. 119 (2007), 944–960.
9. Buslov, M.M., Saphonova, I.Yu., Watanabe, T., Obut, O.T., Fujiwara, Y., Iwata, K., Semakov, N.N., Sugai, Y., Smirnova, L.V., Kazansky, A.Yu., Itaya, T., Evolution of the Paleo-Asian Ocean (Altai-Sayan, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci. J. 5 (2001), 203–224.
10. Buslov, M.M., Watanabe, T., Fujiwara, Y., Iwata, K., Smirnova, L.V., Safonova, I.Yu., Semakov, N.N., Kiryanova, A.P., Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. J. Asian Earth Sci. 23 (2004), 655–671.
11. Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X., Wu, F., Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. J. Asian Earth Sci. 42 (2011), 949–968.
12. Carroll, M.R., Wyllie, P.J., Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb; implications for assimilation and differentiation processes near the crust-mantle boundary. J. Petrol. 30 (1989), 1351–1382.
13. Castro, A., Douce, Patiño, Corretgé L.G., Jesús, D., El-Biad, M., El-Hmidi, H., Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contrib. Miner. Petrol. 135 (1999), 255–276.
14. Castro, A., Gerya, T., Garcнa-Casco, A., Fernбndez, C., Dнaz-Alvarado, J., Moreno-Ventas, I., Lцw, I., Melting relations of MORB–sediment mйlanges in underplated mantle wedge plumes; implications for the origin of Cordilleran-type batholiths. J. Petrol. 51 (2010), 1267–1295.
15. Chappell, B.W., White, A.J.R., I-and S-type granites in the Lachlan Fold Belt. Geol. Soc. Am. Spec. Papers 272 (1992), 1–26.
16. Chappell, B.W., Magma mixing and the production of compositional variation within granite suites: evidence from the granites of southeastern Australia. J. Petrol. 37 (1996), 449–470.
17. Chappell, B.W., Bryant, C.J., Wyborn, D., White, A.J.R., Williams, I.S., High-and low-temperature I-type granites. Resour. Geol. 48 (1998), 225–235.
18. Chappell, B.W., Aluminum saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos 46 (1999), 535–551.
19. Chen, B., Jahn, B.M., Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. J. Asian Earth Sci. 23 (2004), 691–703.
20. Chen, J.F., Han, B.F., Ji, J.Q., Zhang, L., Xu, Z., He, G.Q., Wang, T., Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos 115 (2010), 137–152.
21. Chen, X., Shu, L., Santosh, M., Late Paleozoic post-collisional magmatism in the Eastern Tianshan Belt, Northwest China: new insights from geochemistry, geochronology and petrology of bimodal volcanic rocks. Lithos 127 (2011), 581–598.
22. Chen, Y., Xiao, X., Windley, B.F., Zhang, J., Zhou, K., Late Devonian-early Permian subduction-accretion of the Zharma-Saur oceanic arc, West Junggar (NW China): Insights from field geology, geochemistry and geochronology. J. Asian Earth Sci. 145 (2017), 424–445.
23. Chung, S.L., Liu, D., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.J., Zhang, Q., Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31 (2003), 1021–1024.
24. Clemens, J.D., Holloway, J.R., White, A.J., Origin of an A-type granite: experimental constraints. Am. Mineral. 71 (1986), 317–324.
25. Clemens, J.D., Stevens, G., Farina, F., The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126 (2011), 174–181.
26. Clemens, J.D., Stevens, G., What controls chemical variation in granitic magmas?. Lithos 134 (2012), 317–329.
27. Collins, W.J., Beams, S.D., White, A.J.R., Chappell, B.W., Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Miner. Petrol. 80 (1982), 189–200.
28. Condie, K.C., TTGs and adakites: are they both slab melts?. Lithos 80 (2005), 33–44.
29. Conrad, W.K., Nicholls, I.A., Wall, V.J., Water-saturated and undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. J. Petrol. 29 (1988), 765–803.
30. Dyachkov, B.A., Intrusive Magmatism and Metallogeny of Eastern Kalba. 1972, Nedra, Moscow, 211 in Russian.
31. Dyachkov, B.A., Mayorova, N.P., Shcherba, G.N., Abdrakhmanov, K.A., Granitoid Suites and Ore Assemblages of the Kalba-Narym Belt (Rudny Altai). 1994, Gylym, Almaty in Russian.
32. Davies, J.H., von Blanckenburg, F., Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129 (1995), 85–102.
33. Deng, Y.F., Yuan, F., Zhou, T., Hollings, P., Zhang, D., Geochemistry and tectonic implications of the Early Carboniferous Keketuobie intrusion in the West Junggar foldbelt, NW China. J. Asian Earth Sci., 159, 2017, 10.1016/j.jseaes.2017.09.014.
34. Dawey, J.F., Extensional collaps of orogens. Tectonics 7 (1988), 1123–1139.
35. Dobretsov, N.L., Berzin, N.A., Buslov, M.M., Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 37 (1995), 335–360.
36. Douce, A.E.P., Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. J. Geophys. Res. Solid Earth 100:B8 (1995), 15623–15639.
37. Douce, A.E.P., Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25 (1997), 743–746.
38. Douce, A.E.P., Beard, J.S., Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J. Petrol. 36 (1995), 707–738.
39. Douce, A.E.P., Beard, J.S., Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J. Petrol. 37 (1996), 999–1024.
40. Eby, G.N., The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26 (1990), 115–134.
41. Elkins-Tanton, L.T., Continental magmatism caused by lithospheric delamination. Geol. Soc. Am. Spec. Papers 388 (2005), 449–461.
42. Foley, S.F., Barth, M.G., Jenner, G.A., Rutile/melt partition coefficients for trace elements and assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta 64 (2000), 933–938.
43. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., A geochemical classification for granitic rocks. J. Petrol. 42 (2001), 2033–2048.
44. Gao, R., Xiao, L., Pirajno, F., Wang, G.C., He, X.X., Yang, G., Yan, S.W., Carboniferous-Permian extensive magmatismin the West Junggar, Xinjiang, northwestern China: its geochemistry, geochronology, and petrogenesis. Lithos 204 (2014), 125–143.
45. García-Casco, A., Haissen, F., Castro, A., El-Hmidi, H., Torres-Roldán, R.L., Millán, G., Synthesis of staurolite in melting experiments of a natural metapelite: consequences for the phase relations in low-temperature pelitic migmatites. J. Petrol. 44 (2003), 1727–1757.
46. Goldstein, S.J., Jacobsen, S.B., Nd and Sm isotopic systematics of rivers water suspended material: implications for crustal evolution. Earth. Planet Sci. Lett. 87 (1988), 249–265.
47. Griffin, W.L., Powell, W.J., Pearson, N.J., O'Reilly, S.Y., 2008 GLITTER: Data reduction software for laser ablation ICP-MS. In: Sylvester, P. (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues: Mineralogical Association of Canada, Short Course Series, vol. 40. pp. 307–311.
48. Han, B.F., Wang, S.G., Jahn, B.M., Hong, D.W., Kagami, H., Sun, Y.L., Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chem. Geol. 138 (1997), 135–159.
49. Han, B.F., Guo, Z.J., Zhang, Z.C., Zhang, L., Chen, J.F., Song, B., Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Bulletin 122 (2010), 627–640.
50. Harris, N.B., Pearce, J.A., Tindle, A.G., Geochemical characteristics of collision-zone magmatism. Geol. Soc., London, Spec. Publ. 19 (1986), 67–81.
51. Hollister, L.S., The role of melt in the uplift and exhumation of orogenic belts. Chem. Geol. 108 (1993), 31–48.
52. Hu, A., Jahn, B.M., Zhang, G., Chen, Y., Zhang, Q., Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328 (2000), 15–51.
53. Irvine, T.N.J., Baragar, W.R.A.F., A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8 (1971), 523–548.
54. Jacobsen, S.B., Wasserburg, G.J., Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth Planet. Sci. Lett. 67 (1984), 137–150.
55. Jahn, B., Wu, F., Chen, B., Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans. Roy. Soc. Edinburgh 91 (2000), 181–193.
56. Jenner, G.A., Longerich, H.P., Jackson, S.E., Fryer, B.J., ICP-MS as a powerful tool for high precision trace element analysis in earth sciences: evidence from analysis of selected U.S.G.S. reference samples. Chem. Geol. 83 (1990), 133–148.
57. Jochum, K.P., Nohl, U., Reference materials in geochemistry and environmental research and the GeoReM database. Chem. Geol. 253 (2008), 50–53.
58. Johnston, A.D., Wyllie, P.J., Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contrib. Miner. Petrol. 98 (1988), 352–362.
59. Johnson, K., Barnes, C.G., Miller, C.A., Petrology, geochemistry, and genesis of high-Al tonalite and trondhjemites of the Cornucopia stock, Blue Mountains, Northeastern Oregon. J. Petrol. 38 (1997), 1585–1611.
60. Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R., Wijbrans, J., Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114 (2011), 109–120.
61. Kay, R.W., Kay, S.M., Delamination and delamination magmatism. Tectonophysics 219 (1993), 177–189.
62. Khromykh, S.V., Vladimirov, A.G., Izokh, A.E., Travin, A.V., Prokop'ev, I.R., Azimbaev, E., Lobanov, S.S., Petrology and geochemistry of gabbro and picrites from the Altai collisional system of Hercynides: evidence for the activity of the Tarim plume. Russ. Geol. Geophys. 54 (2013), 1288–1304.
63. Khromykh, S.V., Tsygankov, A.A., Kotler, P.D., Navozov, O.V., Kruk, N.N., Vladimirov, A.G., Buyantuev, M.D., Late Paleozoic granitoid magmatism of Eastern Kazakhstan and Western Transbaikalia: plume model test. Russ. Geol. Geophys. 57 (2016), 773–789.
64. Khromykh, S.V., Tsygankov, A.A., Burmakina, G.N., Kotler, P.D., Sokolova, E.N., Mantle-crust interaction in petrogenesis of the gabbro-granite association in the Preobrazhenka intrusion, Eastern Kazakhstan. Russ. Petrol. 26 (2018), 368–388.
65. Khubanov, V.B., Buyantuev, M.D., Tsygankov, A.A., U-Pb dating of zircons from PZ 3–MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP. Russ. Geol. Geophys. 57 (2016), 190–205.
66. King, P.L., White, A.J.R., Chappell, B.W., Characterization and origin of aluminous A type granites of the Lachlan Fold Belt, southeastern Australia. J. Petrol. 36 (1997), 371–391.
67. King, P.L., Chappell, B.W., Allen, C.M., White, A.J.R., Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci. 48 (2001), 501–514.
68. Koester, E., Pawley, A.R., Fernandes, L.A., Porcher, C.C., Soliani, E. Jr, Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil. J. Petrol. 43 (2002), 1595–1616.
69. Konnikov, E.G., Yermolov, P.V., Dobretsov, G.L., Petrology and Syn-inversional Gabbro-granitic Series. 1977, Nauka, Novosibirsk in Russian.
70. Kotler, P.D., Khromykh, S.V., Vladimirov, A.G., Navozov, O.V., Travin, A.V., Karavaeva, G.S., Murzintsev, N.G., New data on the age and geodynamic interpretation of the Kalba-Narym granitic batholith, eastern Kazakhstan. Dokl. Earth Sci. 462 (2015), 565–569.
71. Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Sun, M., Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res. 25 (2014), 103–125.
72. Kuibida, M.L., Kruk, N.N., Vladimirov, A.G., Polyanskii, N.V., Nikolaeva, I.V., U-Pb isotopic age, composition, and sources of the plagiogranites of the Kalba range, Eastern Kazakhstan. Dokl. Earth Sci. 424 (2009), 72–76.
73. Kuibida, M.L., Kruk, N.N., Volkova, N.I., Serov, P.A., Velivetskaya, T.A., Composition, sources, and genesis of granitoids in the Irtysh Complex, Eastern Kazakhstan. Russ. Petrol. 20 (2012), 188–203.
74. Kuibida, M., Kruk, N., Murzin, O., Shokal'skii, S., Gusev, N., Kirnozova, T., Travin, A., Geologic position, age, and petrogenesis of plagiogranites in northern Rudny Altai. Russ. Geol. Geophys. 54 (2013), 1305–1318.
75. Kuibida, M.L., Safonova, I.Y., Yermolov, P.V., Vladimirov, A.G., Kruk, N.N., Yamamoto, S., Tonalites and plagiogranites of the Char suture-shear zone in East Kazakhstan: implications for the Kazakhstan-Siberia collision. Geosci. Front. 7 (2016), 141–150.
76. Kuzebny, V.S., Igneous Rocks of Southwestern Altai and their Metallogeny. 1975, Nauka KazSSR, Alma-Ata in Russian.
77. Le Maitre, R.W.B., Dudek, P., Keller, A., Lameyre, J., Le Bas, J., Sabine, M.J., Zanettin, A.R., A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, 552.3 CLA. 1989, International Union of Geological Sciences.
78. Li, P., Sun, M., Rosenbaum, G., Jourdan, F., Li, S., Cai, K., Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh shear zone (NW China): implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt. Bulletin 129 (2017), 547–569.
79. Liégeois, J.P., Navez, J., Hertogen, J., Black, R., Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45 (1998), 1–28.
80. Liew, T.C., Hofmann, A.W., Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from an Nd and Sr isotopic study. Contrib. Miner. Petrol. 98 (1998), 129–138.
81. Liu, B., Chen, J.F., Ma, X., Liu, J.L., Gong, E.P., Shi, W.G., Han, B.F., Timing of the final closure of the Irtysh-Zaysan Ocean: new insights from the earliest stitching pluton in the northern West Junggar, NW China. Geol. J., 2017, 10.1002/gj.3121.
82. Lopatnikov, V.V., Izokh, E.P., Ermolov, P.V., Ponomareva, A.P., Stepanov, A.S., Magmatism and Ore Potential of the Kalba-Narym Zone of East Kazakhstan. 1982, Nauka, Moscow in Russian.
83. Lopez, S., Castro, A., Garcнa-Casco, A., Production of granodiorite melt by interaction between hydrous mafic magma and tonalitic crust. Experimental constraints and implications for the generation of Archaean TTG complexes. Lithos 79 (2005), 229–250.
84. Ludwig, K.R., 2003. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel, 4.
85. Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79 (2005), 1–24.
86. McDonough, W.F., Sun, S.S., Ringwood, A.E., Jagoutz, E., Hofmann, A.W., Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim. Cosmochim. Acta 56 (1992), 1001–1012.
87. Middlemost, E.A., Naming materials in the magma/igneous rock system. Earth Sci. Rev. 37 (1994), 215–224.
88. Montel, J.M., Vielzeuf, D., Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib. Miner. Petrol. 128 (1997), 176–196.
89. Mossakovsky, A.A., Ruzhentsev, S.V., Samygin, S.G., Kheraskova, T.N., Central Asian fold belt: geodynamic evolution and history of formation. Russian Geotektonika 6 (1993), 3–33.
90. Moyen, J.-F., Martin, H., Forty years of TTG research. Lithos 148 (2012), 312–336.
91. Muir, R.J., Weaver, S.D., Bradshaw, J.D., Eby, G.N., Evans, J.A., The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. 152 (1995), 689–701.
92. O'Connor, J.T., A classification for quartz-rich igneous rocks based on feldspar ratios. U.S Geol. Survey Professional Paper 525B (1965), 79–84.
93. Orihashi, Y., Hirata, T., Rapid quantitative analysis of Y and REE abundances in XRF glass bead for selected GSJ reference rock standards using Nd-YAG 266 nm UV laser ablation ICP-MS. Geochem. J. 37 (2003), 401–412.
94. Pattison, D.R., Chacko, T., Farquhar, J., McFarlane, C.R., Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J. Petrol. 44 (2003), 867–900.
95. Pearce, J.A., Harris, N.B.W., Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25 (1984), 956–983.
96. Peccerillo, A., Taylor, S.R., Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Miner. Petrol. 58 (1976), 63–81.
97. Petford, N., Atherton, M., Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrol. 37 (1996), 1491–1521.
98. Plotnikov, A.V., Kruk, N.N., Vladimirov, V.G., Kovach, V.P., Zhuravlev, D.Z., Moroz, E.N., Sm-Nd isotope systematics of metamorphic rocks western part of the Altai-Sajan folded area. Doklady Akad. Nauk 388 (2003), 228–232.
99. Rapp, R.P., Watson, E.B., Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib. Miner. Petrol. 94 (1986), 304–316.
100. Rapp, R.P., Watson, E.B., Partial melting of metabasalt at 8–32 kbar: implications for continental growth and crustal-mantle recycling. J. Petrol. 36 (1995), 891–931.
101. Rapp, R.P., Shimizu, N., Norman, M.D., Growth of early continental crust by partial melting of eclogite. Nature 425 (2003), 605–609.
102. Rickwood, P.C., Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22 (1989), 247–263.
103. Roberts, M.P., Clemens, J.D., Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21 (1993), 825–828.
104. Rutter, M.J., Wyllie, P.J., Melting of vapour-absent tonalite at 10 kbar to simulate dehydration–melting in the deep crust. Nature 331 (1988), 159–160.
105. Safonova, I.Y., Seltmann, R., Kroner, A., Gladkochub, D., Schulmann, K., Xiao, W., Kim, T., Komiya, T., Sun, M., A new concept of continental construction in the Central Asian Orogenic Belt (compared to actualistic examples from the Western Pacific). Episodes 34 (2011), 186–194.
106. Safonova, I.Y., Simonov, V.A., Kurganskaya, E.V., Obut, O.T., Romer, R.L., Seltmann, R., Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, East Kazakhstan: geological position, geochemistry, petrogenesis and tectonic setting. J. Asian Earth Sci. 49 (2012), 20–39.
107. Safonova, I., Maruyama, S., Kruk, N., Obut, O., Kotler, P., Gavryushkina, O., Khromykh, S.V., Kuibida, M., Krivonogov, S., Pacific-type orogenic belts: linking evolution of oceans, active margins and intra-plate magmatism. Episodes 41 (2018), 78–87.
108. Safonova, I.Y., Komiya, T., Romer, R.L., Simonov, V., Seltmann, R., Rudnev, Yamamoto, S., Sun, M., Supra-subduction igneous formations of the Char ophiolite belt, East Kazakhstan. Gondwana Res. 59 (2018), 159–179.
109. Scherba, G.N., D'yachkov, B.A., Stuchevsky, N.I., Nakhtigal, G.P., Antonenko, A.N., Lubetsky, V.N., The Great Altai (Geology and Metallogeny). Book 1. 1998, Gylym, Almaty in Russian.
110. Sen, C., Dunn, T., Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Miner. Petrol. 117 (1994), 394–409.
111. Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364 (1993), 299–307.
112. Shand, S.J., Eruptive Rocks: Their genesis, Composition, and Classification, with a Chapter on Meteorites. 1943, Wiley & Sons, New York.
113. Shen, P., Shen, Y., Liu, T., Li, G., Zeng, Q., Geology and geochemistry of the Early Carboniferous Eastern Sawur caldera complex and associated gold epithermal mineralization, Sawur Mountains, Xinjiang, China. J. Asian Earth Sci. 32 (2008), 259–279.
114. Shen, X., Zhang, H., Wang, Q., Wyman, D.A., Yang, Y., Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: petrogenesis and implications for tectonic setting of “A2-type” granites. J. Asian Earth Sci. 42 (2011), 986–1007.
115. Singh, J., Johannes, W., Dehydration melting of tonalites. Part II. Composition of melts and solids. Contrib. Miner. Petrol. 125 (1996), 26–44.
116. Skjerlie, K.P., Johnston, A.D., Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites. Geology 20 (1992), 263–266.
117. Skjerlie, K.P., Douce, A.E.P., Johnston, A.D., Fluid absent melting of a layered crustal protolith: implications for the generation of anatectic granites. Contrib. Miner. Petrol. 114 (1993), 365–378.
118. Skjerlie, K.P., Douce, A.P., Anatexis of interlayered amphibolite and pelite at 10 kbar: effect of diffusion of major components on phase relations and melt fraction. Contrib. Miner. Petrol. 122 (1995), 62–78.
119. Smithies, R.H., The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett. 182 (2000), 115–125.
120. Song, Y., Xu, H., Zhang, J., Wang, D., Liu, E., Syn-exhumation partial melting and melt segregation in the Sulu UHP terrane: evidences from leucosome and pegmatitic vein of migmatite. Lithos 202 (2014), 55–75.
121. Spicer, E.M., Stevens, G., Buick, I.S., The low-pressure partial-melting behaviour of natural boron-bearing metapelites from the Mt. Stafford area, central Australia. Contrib. Miner. Petrol. 148 (2004), 160–179.
122. Stevens, G., Villaros, A., Moyen, J.F., Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35 (2007), 9–12.
123. Sun, S.S., McDonough, W.S., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc., London, Spec. Publ. 42 (1989), 313–345.
124. Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins, Journal of the Geological, Society, London, Special Publication, vol. 42. pp. 313–345.
125. Sylvester, P.J., Post-collisional alkaline granites. J. Geol. 97 (1989), 261–280.
126. Tate, M.C., Johnson, S.E., Subvolcanic and deep-crustal tonalite genesis beneath the Mexican Peninsular Ranges. J. Geol. 108 (2000), 721–728.
127. Sylvester, P.J., Post-collisional strongly peraluminous granites. Lithos 45 (1998), 29–44.
128. Turkina, O.M., Proterozoic tonalites and trondhjemites of the southwestern margin of the Siberian craton: isotope geochemical evidence for the lower crustal sources and conditions of melt formation in collisional settings. Russ. Petrol. 13 (2005), 35–48.
129. Vanderhaeghe, O., Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477 (2009), 119–134.
130. Vielzeuf, D., Montel, J.M., Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib. Miner. Petrol. 117 (1994), 375–393.
131. Vladimirov, A.G., Kozlov, M.S., Shokalsky, S.P., Khalilov, V.A., Rudnev, S.N., Kruk, N.N., Vystavnoi, S.A., Borisov, S.M., Berezikov, Yu.K., Metsner, A.N., Babin, G.A., Mamlin, A.N., Murzin, O.M., Nazarov, G.V., Makarov, V.A., Major epochs of intrusive magmatism of Kuznetsk Alatau, Altai, and Kalba (from U-Pb isotope dates). Russ. Geol. Geophys. 42 (2001), 1157–1178.
132. Vladimirov, A.G., Kruk, N.N., Rudnev, S.N., Khromykh, S.V., Geodynamics and granitoid magmatism of collision orogens. Russ. Geol. Geophys. 44 (2003), 1321–1338.
133. Vladimirov, A.G., Kruk, N.N., Khromykh, S.V., Polyansky, O.P., Chervov, V.V., Vladimirov, V.G., Travin, A.V., Babin, G.A., Kuibida, M.L., Khomyakov, V.D., Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes. Russ. Geol. Geophys. 49 (2008), 468–479.
134. Volkova, N.I., Sklyarov, E.V., High-pressure complexes of the Central Asian Fold Belt: geological setting, geochemistry, and geodynamic implications. Russ. Geol. Geophys. 48 (2007), 83–90.
135. Volkova, N.I., Tarasova, E.N., Polyanskii, N.V., Vladimirov, A.G., Khomyakov, V.D., High-pressure rocks in the serpentinite mйlange of the Chara zone, eastern Kazakhstan: geochemistry, petrology, and age. Geochem. Int. 46 (2008), 386–401.
136. Wang, Q., Xu, J.F., Jian, P., Bao, Z.W., Zhao, Z.H., Li, C.F., Xiong, X.L., Ma, J.L., Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. J. Petrol. 47 (2006), 119–144.
137. Wang, B., Cluzel, D., Shu, L., Faure, M., Charvet, J., Chen, Y., De Jong, K., Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan. Int. J. Earth Sci., 98, 2009, 1275.
138. Watkins, J.M., Clemens, J.D., Treloar, P.J., Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contrib. Miner. Petrol. 154 (2007), 91–110.
139. Watson, E.B., Harrison, T.M., Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64 (1983), 295–304.
140. Whalen, J.B., Currie, K.L., Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol. 95 (1987), 407–419.
141. Whalen, J.B., Jenner, G.A., Longstaffe, F.J., Robert, F., Gariйpy, C., Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. J. Petrol. 37 (1996), 1463–1489.
142. Whalen, J.B., Percival, J.A., McNICOLL, V.J., Longstaffe, F.J., A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for late Archean tectonomagmatic processes. J. Petrol. 43 (2002), 1551–1570.
143. White, R.V., Tarney, J., Kerr, A.C., Saunders, A.D., Kempton, P.D., Pringle, M.S., Klaver, G.T., Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust. Lithos 46 (1999), 43–68.
144. Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., Badarch, G., Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. London 164 (2007), 31–47.
145. Winther, K.T., An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem. Geol. 127 (1996), 43–59.
146. Wolf, M.B., Wyllie, P.J., Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib. Miner. Petrol. 115 (1994), 369–383.
147. Xiao, L., Clemens, J.D., Origin of potassic (C-type) adakite magmas: experimental and field constraints. Lithos 95 (2007), 399–414.
148. Xiao, W., Santosh, M., The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res. 25 (2014), 1429–1444.
149. Xiao, W., Huang, B., Han, C., Sun, S., Li, J., A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res. 18 (2010), 253–273.
150. Xiong, X.L., Li, X.H., Xu, J.F., Li, W.X., Extremely high Na adakite-like magmas derived from lower crust basaltic underplate: the Zhantang andesitic rocks from Huichang Basin, SE China. Geochem. J. 37 (2003), 233–252.
151. Xiong, X.L., Adam, J., Green, T.H., Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem. Geol. 218 (2005), 339–359.
152. Yakubchuk, A.S., Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. J. Asian Earth Sci. 23 (2004), 761–779.
153. Yang, G., Li, Y., Wu, H., Zhong, X., Yang, B., Yan, C., Si, G., Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China. J. Asian Earth Sci. 40 (2011), 722–736.
154. Yermolov, P.V., Dobretsov, N.L., Polyansky, N.V., Klenina, N.L., Khomyakov, V.D., Kuzebny, V.S., Revyakin, P.S., Bortsov, V.D., Ophiolites of the Chara zone. Abdulin, A.A., Patalakha, E.I., (eds.) Ophiolites, 1981, Nauka KazSSR, Alma-Ata, 103–178 in Russian.
155. Yermolov, P.V., Vladimirov, A.G., Izokh, A.E., Polyansky, N.V., Kuzebnyi, B.C., Revyakin, P.S., Bortsov, V.D., Orogenic Magmatism of Ophiolite Belts (by example of East Kazakhstan). 1983, Nauka, Novosibirsk in Russian.
156. Yermolov, P.V., Key Problems of the Isotope Geology and Metallogeny of Kazakhstan. 2013, Kazakhstan-Russian University Publ, Karaganda in Russian.
157. Yin, J., Yuan, C., Sun, M., Long, X., Zhao, G., Wong, K.P., Cai, K., Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications. Gondwana Res. 17 (2010), 145–152.
158. Yuan, C., Sun, M., Xiao, W., Li, X., Chen, H., Lin, S., Long, X., Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chem. Geol. 242 (2007), 22–39.
159. Yuan, C., Sun, M., Wilde, S., Xiao, W.J., Xu, Y.G., Long, X.P., Zhao, G.C., Post-collisional plutons in the Balikun area, East Chinese Tianshan: evolving magmatism in response to extension and slab break-off. Lithos 119 (2010), 269–288.
160. Yuan, L., Zhang, X., Xue, F., Liu, F., Juvenile crustal recycling in an accretionary orogen: insights from contrasting Early Permian granites from central Inner Mongolia, North China. Lithos 264 (2016), 524–539.
161. Zen, E.A., Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. J. Petrol. 27 (1986), 1095–1117.
162. Zhang, C.L., Santosh, M., Zou, H.B., Xu, Y.G., Zhou, G., Dong, G.F., Ding, R.F., Wang, H.Y., Revisiting the “Irtish tectonic belt”: implications for the Paleozoic tectonic evolution of the Altai orogen. J. Asian Earth Sci. 52 (2012), 117–133.
163. Zhang, X., Yuan, L., Xue, F., Yan, X., Mao, Q., Early Permian A-type granites from central Inner Mongolia, North China: magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Res. 28 (2015), 311–327.
164. Zhao, P., Jahn, B.M., Xu, B., Liao, W., Wang, Y., Geochemistry, geochronology and zircon Hf isotopic study of peralkaline-alkaline intrusions along the northern margin of the North China Craton and its tectonic implication for the southeastern Central Asian Orogenic Belt. Lithos 261 (2016), 92–108.
165. Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M., Geology of the USSR: plate tectonic synthesis. Am. Geophys. Union. Geodyn. Ser. Monograph, 21, 1990.