Инд. авторы: Sokol E.V., Kozmenko O.A., Khoury H.N., Kokh S.N., Novikova S.A., Nefedov A.A., Sokol I.A., Zaikin P.
Заглавие: Calcareous sediments of the Muwaqqar Chalk Marl Formation, Jordan: Mineralogical and geochemical evidences for Zn and Cd enrichment
Библ. ссылка: Sokol E.V., Kozmenko O.A., Khoury H.N., Kokh S.N., Novikova S.A., Nefedov A.A., Sokol I.A., Zaikin P. Calcareous sediments of the Muwaqqar Chalk Marl Formation, Jordan: Mineralogical and geochemical evidences for Zn and Cd enrichment // Gondwana Research. - 2017. - Vol.46. - P.204-226. - ISSN 1342-937X. - EISSN 1878-0571.
Идентиф-ры: DOI: 10.1016/j.gr.2017.03.008; РИНЦ: 29502343; SCOPUS: 2-s2.0-85018476406; WoS: 000399985000013;
Реферат: eng: Immature organic-rich siliceous chalk ('oil shale') and organic-poor limestones of the Maastrichtian-Paleocene Muwaqqar Chalk Marl Formation (MCM) (central Jordan) deposited on the southern Neo-Tethys epicontinental shelf provide a perfect example of carbonate sedimentation in a bioproductive upwelling environment. The MCM sediments have been studied by XRD, SEM, EMPA, sequential extraction, ICP-MS, GC-MS, and FTIR to gain in-sights into causes of their unusual composition. The sediments are remarkable by exceptionally high enrichment in phosphorus and redox sensitive elements (RSE), mainly Cd (up to 225 ppm), Zn (1500 ppm), and Mo (up to 180 ppm), as well as in Ni, V, Cr, and U, with a total RSE budget reaching 3200 ppm, coupled with up to 23 wt% organic matter and 4.3 wt% sulphur. The bulk organic matter consists of type I/II kerogens sulphurised during sulphate reduction. Redox sensitive metals were brought to sediments mainly by biogenic shuttle, while the terrestrial input was minor, and hydrothermal fluids apparently did not contribute to total RSE. The metals can reside in sulphide (Zn-Cd-(Cu)) in sphalerite or/and wurtzite; Fe-Ni-V-Cu-(Mo) in pyrite, carbonate (Zn-Cd-(Mo-Ni-V)), and organic (Ni-V-Cu) phases. Authigenic Cd-rich sphalerite and wurtzite are much more abundant than pyrite in immature 'oil shales', for three main reasons: (i) S-bearing ligands coordinating Cd and Zn in primary organic matter; (ii) high sulphur in organic matter; and (iii) low concentrations of reactive iron in bottom sediments. Limestones redeposited under oxic environments lose all sulphides, but high Zn (up to 337 ppm) and Cd (up to 29 ppm) become redistributed into the newly formed carbonates. Thus, shelf carbonates of different ages deposited under anoxic/sulfidic conditions in zones of high bioproductivity, as well as their derivative limestones and dolomites, can be the primary Zn and Cd storage for Mississippi Valley-type deposits with high Zn/Pb and Cd/Zn ratios. (C) 2017 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Ключевые слова: AQUEOUS-SOLUTIONS; CONTINENTAL-CRUST; DEPOSITIONAL ENVIRONMENT; TRACE-METALS; ORGANIC-MATTER; EOCENE OIL SHALES; BLACK SHALE FORMATION; (CD,CA)CO3 SOLID-SOLUTIONS; Mississippi Valley-type deposits; Redox sensitive elements; Anoxia; Organic-rich calcareous sediments; Muwaqqar Chalk Marl Formation; CARBON-RICH SEDIMENTS; CALCITE SURFACE;
Издано: 2017
Физ. хар-ка: с.204-226
Цитирование: 1. Abanda, P.A., Hannigan, R.E., Effect of diagenesis on trace element partitioning in shales. Chemical Geology 230 (2006), 42–59.
2. Abed, A.M., Review of uranium in the Jordanian phosphorites: distribution, genesis and industry. Jordan Journal of Earth and Environmental Sciences 4 (2012), 35–45.
3. Abed, A.M., The eastern Mediterranean phosphorite giants: an interplay between tectonics and upwelling. GeoArabia 18 (2013), 67–94.
4. Abed, A.M., Amireh, B.S., Petrography and geochemistry of some Jordanian oil shales from North Jordan. Journal of Petroleum Geology 5:3 (1983), 261–274.
5. Abed, A., Sadaqah, R., Enrichment of uranium in the uppermost Al-Hisa Phosphorite Formation, Eshidiyya basin, southern Jordan. Journal of African Earth Sciences 77 (2013), 31–40.
6. Abed, A.M., Arouri, K.R., Boreham, C.J., Source rock potential of the phosphorite-bituminous chalk-marl sequence in Jordan. Marine and Petroleum Geology 22 (2005), 413–425.
7. Abed, A.M., Arouri, K., Amiereh, B.S., Al-Hawari, Z., Characterization and genesis of some Jordanian oil shales. Dirasat, Pure Sci. 36 (2009), 7–17.
8. Ali Hussein, M.A., Alqudah, M., Blessenohl, M., Podlaha, O.G., Mutterlose, J., Depositional environment of Late Cretaceous to Eocene organic-rich marls from Jordan. GeoArabia 20 (2015), 191–210.
9. Almogi-Labin, A., Bein, A., Sass, A., Late cretaceous upwelling system along the southern Tethys margin (Israel): interrelationship between productivity, bottom water environments, and organic matter preservation. Paleoceanography 8 (1993), 671–690.
10. Alnawafleh, H., Tarawneh, K., Ghannam, A., Abu-Sa'ad, L., Isfir Al-Mahata: a newly discovered subsurface oil shale deposit in southern Jordan. Journal of Geology and Geophysics 5:3 (2013), 12–21.
11. Alnawafleh, H.M., Fraige, F.Y., Tarawneh, K.E., Sarairah, I.A., Al-Khatib, L.A., Fractional yield, extract composition and variability from Jordanian oil shales. Journal of Analytical Sciences, Methods and Instrumentation 6 (2016), 51–63.
12. Alnawafleh, H., Tarawneh, K., Siavalas, G., Christanis, K., Iordanidis, A., Geochemistry and organic petrography of Jordanian Sultani oil shale. Open Journal of Geology 6 (2016), 1209–1220.
13. Alqudah, M., Hussein, M.A., van den Boorn, S., Podlaha, O.G., Mutterlose, J., Biostratigraphy and depositional setting of Maastrichtian – Eocene oil shales from Jordan. Marine and Petroleum Geology 52 (2014), 93–106.
14. Alqudah, M., Ali, Hussein M., van den Boorn, S., Podlaha, O.G., Mutterlose, J., Biostratigraphy and depositional setting of Maastrichtian - Eocene oil shales from Jordan. Marine and Petroleum Geology 60 (2015), 87–104.
15. Alwan, K.A., Williams, P.A., Mineral formation from aqueous solution. Part I. The deposition of hydrozincite, Zn5(OH)6(CO3)2, from natural waters. Transition Metal Chemistry 4 (1979), 128–132.
16. Awid-Pascual, R., Kamenetsky, V.S., Goemann, K., Allen, N., Noble, T., Lottermoser, B.G., Rodemann, T., The evolution of authigenic Zn-Pb-Fe-bearing phases in the Grieves Siding peat, western Tasmania. Contributions to Mineralogy and Petrology, 170, 2015, 17.
17. Barjous, M., The Geology of Siwaqa, Bull. 4. 1986, NRA, Amman, Jordan.
18. Barth, M.G., McDonough, W.F., Rudnick, R.L., Tracking the budget of Nb and Ta in the continental crust. Chemical Geology 165 (2000), 197–213.
19. Bender, F., Geologie von Jordanien. Beiträge zur Regionalen Geologie der Erde, Band 7. 1968, Gebrüder Bornträger, Berlin (230 pp.).
20. Bouabdellah, M., Sangster, D.F., Leach, D.L., Brown, A.C., Johnson, C.A., Emsbo, P., Genesis of the Touissit-Bou Beker Mississippi Valley-type district (Morocco–Algeria) and its relationship to the Africa-Europe collision. Economic Geology 107 (2012), 117–146.
21. Boyle, E.A., Cadmium: chemical tracer of deepwater paleoceanography. Paleoceanography 3 (1988), 471–489.
22. Bradley, D.C., Leach, D.L., Tectonic controls of Mississippi Valley-type lead–zinc mineralization in orogenic forelands. Mineralium Deposita 38 (2003), 652–667.
23. Bruland, K.W., Knauer, G., Martin, J., Zinc in Northeast Pacific waters. Nature 271 (1978), 741–743.
24. Brumsack, H.J., Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP Legs 11, 14, 36 and 41). Chemical Geology 31 (1980), 1–25.
25. Brumsack, H.J., The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography Palaeoclimatology Palaeoecology 232 (2006), 344–361.
26. Buchanan, B.B., Gruissem, W., Jones, R.L., Biochemistry and Molecular Biology of Plants. first ed., 2000, American Society of Plant Physiology, Rockville, Maryland, USA (1367 pp.).
27. Chan, M.A., Archer, A.W., (eds.) Extreme Depositional Environments: Mega End Members in Geological Time Geological Society of America Special Papers, 370, 2003, Geological Society of America, Boulder (283 pp.).
28. Connan, J., Nissenbaum, A., Imbus, K., Zumberge, J., Macko, S., Asphalt in iron age excavations from the Philistine Tel Miqne-Ekron city (Israel): origin and trade routes. Organic Geochemistry 37 (2006), 1768–1786.
29. Davis, J.A., Fuller, C.C., Cook, A.D., A model for trace metal sorption processes at the calcite surface: adsorption of Cd2 + and subsequent solid-solution formation. Geochim. Cosmochim. Acta 51 (1987), 1477–1490.
30. Demaison, G.J., Moore, G.T., Anoxic environments and oil source bed genesis. The American Association of Petroleum Geologists Bulletin 64:8 (1980), 1179–1209.
31. Disnar, J.R., Organic matter in ore genesis: progress and perspectives. Org. Geochem. 16 (1990), 577–599.
32. Du, Y., Lian, F., Zhu, L., Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells. Environmental Pollution 159 (2011), 1763–1768.
33. Evans, A.M., Sons, J.W., Ore Geology and Industrial Minerals – An Introduction. 3 ed., 1992, Wiley-Blackwell, Singapore (400 pp.).
34. Fernández-González, Á., Prieto, M., Putnis, A., López-Andrés, S., Concentric zoning patterns in ctystallizing (Cd,Ca)CO3 solid solutions from aqueous solutions. Mineralogical Magazine 63 (1999), 331–343.
35. Fleurance, S., Cuney, M., Malartre, M., Reyx, J., Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeography Palaeoclimatology Palaeoecology 369 (2013), 201–219.
36. Fontbote, L., Gorzawski, H., Genesis of the Mississippi valley-type Zn-Pb deposit of San Vicente, central Peru: geologic and isotopic (Sr, O, C, S, Pb) evidence. Economic Geology 85 (1990), 1402–1437.
37. Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y.-W., Hu, Y.-K., Zhao, Z.-D., Chemical composition of the continental crust as revealed by studies in east China. Geochimica et Cosmochimica Acta 62 (1998), 1959–1975.
38. Goren, O., Distribution and mineralogical residence of trace elements in the Israeli carbonate oil shales. Fuel 143 (2015), 118–130.
39. Grandia, F., Asmerom, Y., Getty, S., Cardellach, E., Canals, A., U-Pb dating of MVT ore-stage calcite: implications for fluid flow in a Mesozoic extensional basin from Iberian Peninsula. Journal of Geochemical Exploration 69-70 (2000), 377–380.
40. Haggan, T., Parnell, J., Hydrocarbon–metal associations in the Western Cordillera, Central Peru. Journal of Geochemical Exploration 69–70 (2000), 229–234.
41. Hakimi, M.H., Abdullah, W.H., Alqudah, M., Makeen, Y.M., Mustapha, K.A., Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: origin of organic matter input and preservation conditions. Fuel 181 (2016), 34–45.
42. Hamarneh, Y., Oil Shale Resources Development in Jordan: Amman. 1998, Natural Resources Authority, Hashemite Kingdom of Jordan (98 pp.).
43. Heaney, P.J., Structure and chemistry of the low-pressure silica polymorphs. Heaney, P.J., Prewitt, C.T., Gibbs, G.V., (eds.) Reviews in Mineralogy and Geochemistry, Vol. 29, 1994, Mineralogical Society of America, Washington, D.C.P., 1–40.
44. Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.W., Pattrick, R.A.D., Garner, C.D., Vaughan, D.J., Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta 60 (1996), 3631–3642.
45. Helz, G.R., Bura-Nakic, E., Mikac, N., Ciglenecki, I., New model for molybdenum behavior in euxinic waters. Chemical Geology 284 (2011), 323–332.
46. Hiatt, E.E., Budd, D.A., Extreme paleoceanographic conditions in a Paleozoic oceanic upwelling system: organic productivity and widespread phosphogenesis in the Permian Phosphoria Sea. Chan, M.A., Archer, A.W., (eds.) Extreme Depositional Environments: Mega End Members in Geologic Time Geological Society of America Special Paper, 370, 2003, 245–265 Boulder.
47. Holman, A.I., Grice, K., Jaraula, C.M.B., Schimmelmann, A., Bitumen II from the Paleoproterozoic Here's Your Chance Pb/Zn/Ag deposit: implications for the analysis of depositional environment and thermal maturity of hydrothermally-altered sediments. Geochimica et Cosmochimica Acta 139 (2014), 98–109.
48. Huerta-Diaz, M.A., Morse, J.W., Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 56 (1992), 2681–2702.
49. Ingall, E.D., Jahnke, R.A., Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology 139 (1997), 219–229.
50. Janssen, D.J., Conway, T.M., John, S.G., Christian, J.R., Kramer, D.I., Pedersen, T.F., Cullen, J.T., Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. Proceedings of the National Academy of Sciences 111 (2014), 6888–6893.
51. Jaser, D., The Geology of Khan ez Zabib. 1986, Geological Mapping Division, Natural Re-sources Authority, Amman, Jordan Bulletin 3.
52. Jørgensen, B.B., Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296 (1982), 643–645.
53. Khoury, H., Tripolization of chert in Jordan. Sediment. Geol. 53 (1987), 305–310.
54. Khoury, H., Mineralogy and petrography of some opaline phase from Jordan. Neues Jahrbuch für Mineralogie (Abhandlungen) 10 (1989), 433–440.
55. Khoury, H., Salameh, E., Clark, I., Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Applied Geochemistry 43 (2014), 49–65.
56. Khoury, H., Sokol, E., Clark, I., Calcium uranium oxides from Central Jordan: mineral assemblages, chemistry, and alteration products. The Canadian Mineralogist 53 (2015), 61–82.
57. Khoury, H.N., Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Kozmenko, O.A., Goryainov, S.V., Clark, I.D., Intermediate members of the lime-monteponite solid solutions (Ca1-xCdxO, x = 0.36-0.55): discovery in natural occurrence. American Mineralogist 101 (2016), 132–147.
58. Khoury, H.N., Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V., Clark, I.D., Tululite, Ca14(Fe3 +,Al)(Al,Zn,Fe3 +,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Mineralogy and Petrology 110 (2016), 125–140.
59. Khoury, H.N., Kokh, S.N., Sokol, E.V., Likhacheva, A.Yu., Seryotkin, Y.V., Belogub, E.V., Ba and Sr mineralization of fossil fish bones from metamorphosed Belqa group sediments, Central Jordan: an integrated methodology. Arabian Journal of Geosciences, 9, 2016, 461, 10.1007/s12517-016-2503-x.
60. Khrewesh, A.M., Abu Hamad, A., Abed, A.M., Late Cretaceous Muwaqqar Formation ammonites in southeastern Jordan. Jordan Journal of Earth and Environmental Sciences 6:2 (2014), 77–83.
61. Kisker, C., Schindelin, H., Rees, D.C., Molybdenum-cofactor-containing enzymes: structure and mechanism. Annual Review of Biochemistry 66 (1997), 233–267.
62. Kisker, C., Schindelin, H., Baas, D., Reètey, J., Meckenstock, R.U., Kroneck, P.M.H., A structural comparison of molybdenum cofactor-containing enzymes. FEMS Microbiology Reviews 22 (1999), 503–521.
63. Knauth, L.P., Petrogenesis of chert. Heaney, P.J., Prewitt, C.T., Gibbs, G.V., (eds.) Silica: Physical Behavior, Geochemistry and Materials Applications Reviews in Mineralogy and Geochemistry, Vol. 29, 1994, Mineralogical Society of America, Washington, D.C.P, 233–258.
64. Kolodny, Y., Garrison, R., Sedimentation and diagenesis in paleo-upwelling zones of epeiric sea and basinal settings: a comparison of the Cretaceous Mishash Formation of Israel and the Miocene Monterey Formation of California. Iijima, A., Abed, A.M., Garrison, R., (eds.) Siliceous, Phosphatic and Glauconitic Sediments in the Tertiary and Mesozoic. Proceeding. 29th International Geological Congress. Part C. VSP, the Netherlands, 1994, 133–158.
65. Lane, T.W., Morel, F.M., A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences of the United States of America 97 (2000), 4627–4631.
66. Lane, T.W., Saito, M.A., George, G.N., Pickering, I.J., Prince, R.C., Morel, F.M.M., A cadmium enzyme from a marine diatom. Nature, 435, 2005, 42.
67. Large, D.J., Fortey, N.J., Milodowski, A.E., Christy, A.G., Dodd, J., Petrographic observations of iron, copper, and zinc sulfides in freshwater canal sediment. Journal of Sedimentary Research 71 (2001), 61–69.
68. Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J., Walters, S., Sediment-hosted lead–zinc deposits: a global perspective. Economic Geology 100th Anniv, 2005, 561–607.
69. Lee, J.G., Morel, F.M.M., Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environmental Science & Technology, 1996, 1814–1821.
70. Little, S.H., Vance, D., Lyons, T.W., McManus, J., Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings. American Journal of Science 315 (2015), 77–119.
71. Liu, Y., Hou, Z., Yang, Z., Tian, S., Song, Y., Yu, Y., Ma, W., Geology and chronology of the Zhaofayong carbonate-hosted Pb-Zn ore cluster: implication for regional Pb-Zn metallogenesis in the Sanjiang belt, Tibet. Gondwana Research 35 (2016), 15–26.
72. Lovelock, P.E.R., A review of the tectonics of the northern Middle East region. Geological Magazine 121 (1984), 577–587.
73. Mandel, S., Tas, A.C., Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5 °C. Materials Science and Engineering 30 (2010), 245–254.
74. März, C., Poulton, S.W., Beckmann, B., Küster, K., Wagner, T., Kasten, S., Redox sensitivity of P cycling during black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta 72 (2008), 3703–3717.
75. März, C., Wagner, T.S., Al-Alaween, A.M., Boorn, S., Podlaha, O.G., Kolonic, S., Poulton, S.W., Schnetger, B., Brumsack, H.-J., Repeated enrichment of trace metals and organic carbon on an Eocene high-energy shelf caused by anoxia and reworking. Geology, 2016, 10.1130/G38412.1.
76. Meyer, K.M., Kump, L.R., Oceanic euxinia in Earth history: causes and consequences. Annual Review of Earth and Planetary Sciences 36 (2008), 251–288.
77. Misi, A., Iyer, S.S., Tassinari, C.C.G., Kyle, J.R., Coelho, C.E.S., Franca-Rocha, W.J.S., Gomes, A.S.R., Cunha, I.A., Geological and isotopic constraints on the metallogenic evolution of the Proterozoic sediment-hosted Pb-Zn (Ag) deposits of Brazil. Gondwana Research 2 (1999), 47–68.
78. Morel, F.M.M., The oceanic cadmium cycle: biological mistake or utilization?. Proceedings of the National Academy of Sciences, 110(21), 2013, E1877.
79. Morse, J.W., Luther, G.W., Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63:19 (1999), 3373–3378.
80. Nathan, Y., Soudry, D., Levy, Y., Shitrirt, D., Dorfman, E., Geochemistry of cadmium in the Negev phosphorites. Chemical Geology 142 (1997), 87–107.
81. Pace, N.J., Weerapana, E., Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules 4 (2014), 419–434.
82. Paradis, S., Hannigan, P., Dewing, K., Mississippi Valley-type lead-zinc deposits. Goodfellow, W.D., (eds.) Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, 2007, Geol. Assoc. of Canada, Mineral Deposits Division, 185–203 Sp. Pub., 5, pp.
83. Park, H., McGinn, P.J., Morel, F.M.M., Expression of cadmium carbonic anhydrase of diatoms in seawater. Aquatic Microbial Ecology 51 (2008), 183–193.
84. Pedersen, T.F., Calvert, S.E., Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?. AAPG Bulletin 74 (1990), 454–466.
85. Pokrovsky, O.S., Schott, J., Surface chemistry and dissolution kinetics of divalent metal carbonates. Environmental Science & Technology 36 (2002), 426–432.
86. Poulton, S.W., Canfield, D.E., Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements 7 (2011), 107–112.
87. Powell, J.H., Moh'd, B.K., Evolution of Cretaceous to Eocene alluvial and carbonate platform sequences in central and south Jordan. GeoArabia 16 (2011), 29–82.
88. Price, N.M., Morel, F.M.M., Cadmium and cobalt substitution for zinc in a zinc-deficient marine diatom. Nature 344 (1990), 658–660.
89. Prieto, M., Fernández-González, Á., Putnis, A., Fernández-Díaz, L., Nucleation, growth, and zoning phenomena in crystallizing (Ba,Sr)CO3, Ba(SO4,CrO4), (Ba,Sr)SO4, and (Cd,Ca)CO3 solid solutions from aqueous solutions. Geochimica et Cosmochimica Acta 61 (1997), 3383–3397.
90. Prieto, M., Cubillas, P., Fernandez-Gonzalez, A., Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochimica et Cosmochimica Acta 67 (2003), 3859–3869.
91. Rehder, D., The role of vanadium in biology. Metallomics, 2016, 10.1039/C4MT00304G.
92. Rickard, D.T., Willden, M., Marde, Y., Ryhage, R., Hydrocarbons associated with lead–zinc ores at Laisvall, Sweden. Nature 225 (1975), 131–132.
93. Schäffer, R., Sass, I., The thermal springs of Jordan. Environ. Earth Sci. 72 (2014), 171–187.
94. Schwartz, M.O., Cadmium in zinc deposits: economic geology of a polluting element. International Geology Review 42 (2000), 445–469.
95. Sheldon, R.P., Ancient marine phosphorites. Annual Review of Earth and Planetary Sciences 9 (1981), 251–284.
96. Sokol, E.V., Kokh, S.N., Vapnik, Ye, Thiéry, V., Korzhova, S.A., Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. American Mineralogist 99 (2014), 1471–1487.
97. Sokol, E., Kozmenko, O., Tomilenko, A., Sokol, I., Smirnov, S., Korzhova, S., Kokh, S., Ryazanova, T., Reutsky, V., Vapnik, Ye, Deyak, M., Geochemical assessment of hydrocarbons migration phenomena: case studies from the south-western margin of the Dead Sea Basin. Journal of Asia Earth Sciences 93 (2014), 211–228.
98. Sokol, E.V., Kokh, S.N., Khoury, H.N., Seryotkin, Yu.V., Goryainov, S.V., Long-term immobilization of Cd2 + at the Tulul Al Hammam natural analogue site, central Jordan. Applied Geochemistry 70 (2016), 43–60.
99. Stipp, S.L.S., Parks, G.A., Nordstrom, D.K., Leckie, J.O., Solubility-product constant and thermodynamic properties of synthetic otavite, CdCO3x, and aqueous association constants for the Cd(II)-CO2-H2O system. Geochimica et Cosmochimica Acta 57 (1993), 2699–2713.
100. Sunda, W.G., Huntsman, S.A., Control of Cd concentrations in a coastal diatom by free ionic Cd, Zn, and Mn in seawater. Environmental Science & Technology 32 (1998), 2961–2968.
101. Sverjensky, D.A., Oil field brines as ore-forming solutions. Economic Geology 79 (1984), 23–37.
102. Taylor, R.D., Leach, D.L., Bradley, D.C., Pisarevsky, S.A., Compilation of mineral resource data for Mississippi Valley-type and clastic-dominated sediment-hosted lead-zinc deposits. U.S. Geological Survey Open-File Report 2009–1297, 2009 (42 pp).
103. Techer, I., Khoury, H.N., Salameh, E., Rassineux, F., Claude, C., Clauer, N., Pagel, M., Lancelot, J., Hamelin, B., Jacquot, E., Propagation of high-alkaline fluids in an argillaceous formation: case study of the Khushaym Matruk natural analogue (Central Jordan). Journal of Geochemical Exploration 90 (2006), 53–67.
104. Tessier, A., Campbell, P.G.C., Bisson, M., Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51 (1979), 844–851.
105. Tribovillard, N., Riboulleau, A., Lyons, T., Baudin, F., Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations. Chemical Geology 213 (2004), 385–401.
106. Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232 (2006), 12–32.
107. Tribovillard, N., Hatem, E., Averbuch, O., Barbecot, F., Bout-Roumazeilles, V., Trentesaux, A., Iron availability as a dominant control on the primary composition and diagenetic overprint of organic-matter-rich rocks. Chemical Geology 401 (2015), 67–82.
108. Vatamaniuk, O.K., Mari, S., Lu, Y., Rea, P.A., Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. The Journal of Biological Chemistry 275 (2000), 31451–31459.
109. Wang, X., Zhang, Z., Zheng, M., Xu, X., Metallogenic mechanism of the Tianbaoshan Pb-Zn deposit, Sichuan. Chinese Journal of Geochemistry 19 (2000), 121–133.
110. van der Weijden, R.D., Interactions Between Cadmium and Calcite. 1995, Faculteit Aardwetenschappen, Universiteit Utrecht, Series: Geologica Ultraiectina (123 p.).
111. Weyand, M., Hecht, H.-J., Kieß, M., Liaud, M.-F., Vilter, H., Schomburg, D., X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 Å resolution. Journal of Molecular Biology 293 (1999), 595–611.
112. Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., Morel, F.M.M., Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452 (2008), 56–61.
113. Xu, M., Kovarik, L., Arey, B.W., Felmy, A.R., Rosso, K.M., Kerisit, S., Kinetics and mechanisms of cadmium carbonate heteroepitaxial growth at the calcite (10–14) surface. Geochimica et Cosmochimica Acta 134 (2014), 221–233.
114. Xu, M., Ilton, E.S., Engelhard, M.H., Qafoku, O., Felmy, A.R., Rosso, K.M., Kerisit, S.N., Heterogeneous growth of cadmium and cobalt carbonate phases at the calcite surface. Chemical Geology 397 (2015), 24–36.
115. Ye, L., Cook, N.J., Liu, T., Ciobanu, C.L., Gao, W., Yang, Y., The Niujiaotang Cd-rich zinc deposit, Duyun, Guizhou province, southwest China: ore genesis and mechanisms of cadmium concentration. Mineralium Deposita 47 (2012), 683–700.
116. Yoffe, O., Nathan, Y., Wolfarth, A., Cohen, S., Shoval, S., The chemistry and mineralogy of the Negev oil shale ashes. Fuel 81 (2002), 1101–1117.
117. Yokoyma, T., Makishima, A., Nakamura, E., Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chemical Geology 157 (1999), 175–187.
118. Zachara, J.M., Cowan, C.E., Resch, C.T., Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta 55 (1991), 1549–1562.
119. Zhang, F.L., Fu, H.W., Casey, P.J., Bishop, W.R., Substitution of cadmium for zinc in farnesyl: protein transferase alters its substrate specificity. Biochemistry 35 (1996), 8166–8171.
120. Zhang, C., Wu, Y., Hou, L., Mao, J., Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan–Yunnan–Guizhou Zn–Pb triangle, southwest China: implications from age-dating studies in the past decade and the Sm–Nd age of Jinshachang deposit. Journal of Asia Earth Sciences 103 (2015), 103–114.
121. Ziegler, M.A., Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia 6 (2001), 445–504.