Инд. авторы: Sokol A.G., Kruk A.N., Chebotarev D.A., Palyanov Y.N.
Заглавие: Carbonatite melt-peridotite interaction at 5.5-7.0 GPa: Implications for metasomatism in lithospheric mantle
Библ. ссылка: Sokol A.G., Kruk A.N., Chebotarev D.A., Palyanov Y.N. Carbonatite melt-peridotite interaction at 5.5-7.0 GPa: Implications for metasomatism in lithospheric mantle // Lithos. - 2016. - Vol.248-251. - P.66-79. - ISSN 0024-4937. - EISSN 1872-6143.
Идентиф-ры: DOI: 10.1016/j.lithos.2016.01.013; РИНЦ: 27046395; SCOPUS: 2-s2.0-84960330563; WoS: 000373863900006;
Реферат: eng: Interaction between carbonatite melt and peridotite is studied experimentally by melting samples of interlayered peridotite-carbonatite-peridotite in graphite containers at 1200-1350 °C and 5.5-7.0 GPa in a split-sphere multianvil apparatus. Starting compositions are lherzolite and harzburgite, as well as carbonatite which may form in the upper part of a slab or in a plume-related source. Most experimental runs were of 150 h duration in order for equilibrium to be achieved.The interaction produced carbonatitic melts with low SiO2 (≤7 wt.%) and high alkalis. At 1200 °C, melt-peridotite interaction occurs through Mg-Ca exchange, resulting in elimination of orthopyroxene and crystallization of magnesite and clinopyroxene. At 1350 °C hybridization of the carbonatite and magnesite-bearing peridotite melts occurred with consumption of clinopyroxene and magnesite, and crystallization of orthopyroxene at MgO/CaO ≥ 4.3. The resulting peridotite-saturated melt has Ca# (37-50) depending on primary carbonatite composition. Compositions of silicate phases are similar to those of high-temperature peridotite but are different from megacrysts in kimberlites. CaO and Cr2O3 changes in garnet produced from the melt-harzburgite interaction at 1200 and 1350 °C perfectly match the observed trend in garnet from metasomatized peridotite of the Siberian subcontinental lithospheric mantle. K-rich carbonatite melts equilibrated with peridotite at 5.5-7.0 GPa and 1200-1350 °C correspond to high-Mg inclusions in fibrous diamond. Carbonatite melt is a weak solvent of entrained xenoliths and therefore cannot produce kimberlitic magma if temperatures are ~1350 °C on separation from the lithospheric peridotite source and ~1000 °C on eruption. © 2016 Elsevier B.V.
Ключевые слова: Mantle; Magma; Kimberlite; Experiment; Diamond formation; Metasomatism;
Издано: 2016
Физ. хар-ка: с.66-79
Цитирование: 1. Agashev A.M., Pokhilenko N.P., Takazawa E., McDonald J.A., Vavilov M.A., Watanabe I., Sobolev N.V. Primary melting sequence of a deep (>250 km) lithospheric mantle as recorded in the geochemistry of kimberlite-carbonatite assemblages, Snap Lake dyke system, Canada. Chemical Geology 2008, 255:317-328.
2. Becker M., le Roex A.P. Geochemistry of South African on- and off-craton, group I and group II kimberlites: petrogenesis and source region evolution. Journal of Petrology 2006, 47:673-703.
3. Boyd F.R., Pokhilenko N.P., Pearson D.G., Mertzman S.A., Sobolev N.V., Finger L.W. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology 1997, 128:228-246.
4. Brey G.P., Köhler T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 1990, 31:1353-1378.
5. Brey G.P., Bulatov V.K., Girnis A.V. Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos 2009, 112:249-259.
6. Brey G.P., Bulatov V.K., Girnis A.V. Melting of K-rich carbonated peridotite at 6-10 GPa and the stability of K-phases in the upper mantle. Chemical Geology 2011, 281:333-342.
7. Coe N., Le Roex A., Gurney J., Pearson D.G., Nowell G. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contributions to Mineralogy and Petrology 2008, 156:627-652.
8. Creighton S., Stachel T., Matveev S., Hofer H., McCammon C., Luth R.W. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contributions to Mineralogy and Petrology 2009, 157:491-504.
9. Dalton J.A., Presnall D.C. The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. Journal of Petrology 1998, 39:1953-1964.
10. Dalton J.A., Presnall D.C. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contributions to Mineralogy and Petrology 1998, 131:123-133.
11. Dalton J.A., Wood B.J. The compositions of primary carbonate melt and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters 1993, 119:511-525.
12. Dasgupta R., Hirschmann M.M. Effect of variable carbonate concentration on the solidus of mantle peridotite. American Mineralogist 2007, 92:370-379.
13. Dasgupta R., Hirschmann M.M. A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contributions to Mineralogy and Petrology 2007, 154:647-661.
14. Dasgupta R., Mallik A., Tsuno K., Withers A.C., Hirth G., Hirschmann M.M. Carbon-dioxide-rich silicate melt in the Earth's upper mantle. Nature 2013, 493:211-222.
15. Doucet L.S., Ionov D.A., Golovin A.V. The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contributions to Mineralogy and Petrology 2013, 165:1225-1242.
16. Doucet L.S., Peslier A.H., Ionov D.A., Brandon A.D., Golovin A.V., Ashchepkov I.V. High water content in the Siberian cratonic mantle linked to melt metasomatism: an FTIR study of Udachnaya peridotite xenoliths. Geochimica et Cosmochimica Acta 2014, 137:159-187.
17. Edgar A.D., Arima M., Baldwin D.K., Bell D.R., Shee S.R., Skinner E.M.W., Walker E.C. High-pressure high-temperature melting experiments on a SiO2-poor aphanitic kimberlite from the Wesselton mine, Kimberley, South Africa. American Mineralogist 1988, 73:524-533.
18. Eggler D.H., Wendlandt R.F. Experimental studies on the relationships between kimberlite magma and partial melting of peridotite. Kimberlites, Diatremes and Diamonds: Their Geology, Petrology, and Geochemistry 1979, 331-378. American Geophysical Union, Washington. F.R. Boyd, H.O.A. Meyer (Eds.).
19. Foley S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 1992, 28:435-453.
20. Girnis A.V., Brey G.P., Ryabchikov I.D. Origin of group IA kimberlites: fluid saturated melting experiments at 45-55 kbar. Earth and Planetary Science Letters 1995, 134:283-296.
21. Girnis A.V., Bulatov V.K., Brey G.P. Formation of primary kimberlite melts - constraints from experiments at 6-12 GPa and variable CO2/H2O. Lithos 2011, 127:401-413.
22. Goncharov A.G., Ionov D.A., Doucet L.S., Pokhilenko L.N. Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth and Planetary Science Letters 2012, 357:99-110.
23. Grassi D., Schmidt M.W. Melting of carbonated pelites at 8-13 GPa: generating K-rich carbonatites for mantle metasomatism. Contributions to Mineralogy and Petrology 2011, 162:169-191.
24. Green D.H., Wallace M.E. Mantle metasomatism by ephemeral carbonatite melts. Nature 1988, 336:459-462.
25. Gudfinnsson G., Presnall D.C. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. Journal of Petrology 2005, 46:1645-1659.
26. Haggerty S.E. Upper mantle mineralogy. Journal of Geodynamics 1995, 20:331-364.
27. Hammouda T., Laporte D. Ultrafast mantle impregnation by carbonatite melts. Geology 2000, 28:283-285.
28. Harris J.W., Vance E.R. Induced graphitization around crystalline inclusions in diamond. Contributions to Mineralogy and Petrology 1972, 35:227-234.
29. Harris M., le Roex A., Class C. Geochemistry of the Uintjiesberg kimberlite, South Africa: petrogenesis of an off-craton, group I, kimberlite. Lithos 2004, 74:149-165.
30. Hart S.R., Zindler A. In search of a bulk-earth composition. Chemical Geology 1986, 57:247-267.
31. Hernlund J., Leinenweber K., Locke D., Tyburczy J. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. American Mineralogist 2006, 91:295-305.
32. Howarth G.H., Barry P.H., Pernet-Fisher J.F., Baziotis I.P., Pokhilenko N.P., Pokhilenko L.N., Bodnar R.J., Taylor L.A., Agashev A.M. Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 2014, 184-187:209-224.
33. Kamenetsky V.S., Kamenetsky M.B., Weiss Y., Navon O., Nielsen T.F.D., Mernagh T.P. How unique is the Udachnaya-East kimberlite: comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 2009, 112:334-346.
34. Kamenetsky V.S., Golovin A.V., Maas R., Giuliani A., Kamenetsky M.B., Weiss Y. Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth-Science Reviews 2014, 139:145-167.
35. Kelemen P.B., Dick H.J.B., Quick J.E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 1992, 358:635-641.
36. Kennedy C.S., Kennedy G. The equilibrium boundary between graphite and diamond. Journal of Geophysical Research 1976, 81:2467-2470.
37. Kesson S.E., Ringwood A.E. Slab-mantle interactions: 2. The formation of diamonds. Chemical Geology 1989, 78:97-118.
38. Kjarsgaard B.A., Pearson D.G., Tappe S., Nowell G.M., Dowall D.P. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 2009, 112:236-248.
39. Klein-Ben David O., Izraeli E.S., Hauri E., Navon O. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochimica et Cosmochimica Acta 2007, 71:723-744.
40. Klein-Ben David O., Logvinova A.M., Schrauder M., Spetius Z.V., Weiss Y., Hauri E.H., Kaminsky F.V., Sobolev N.V., Navon O. High-Mg carbonatitic microinclusions in some Yakutian diamonds - a new type of diamond-forming fluid. Lithos 2009, 112(Suppl. 2):648-659.
41. Konzett J., Ulmer P. The stability of hydrous potassic phases in lherzolitic mantle-an experimental study to 9.5 GPa in simplified and natural bulk compositions. Journal of Petrology 1999, 40:629-652.
42. Kopylova M.G., Matveev S., Raudsepp M. Searching for parental kimberlite melt. Geochimica et Cosmochimica Acta 2007, 71:3616-3629.
43. Kopylova M., Navon O., Dubrovinsky L., Khachatryan G. Carbonatitic mineralogy of natural diamond-forming fluids. Earth and Planetary Science Letters 2010, 291:126-137.
44. le Roex A.P., Bell D.R., Davis P. Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. Journal of Petrology 2003, 44:2261-2286.
45. Litasov K.D., Shatskiy A., Ohtani E., Yaxley G.M. Solidus of alkaline carbonatite in the deep mantle. Geology 2013, 41:79-82.
46. Logvinova A.M., Wirth R., Fedorova E.N., Sobolev N.V. Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. European Journal of Mineralogy 2008, 20:317-331.
47. Mitchell R.H. Petrology of hypabyssal kimberlites: relevance to primary magma compositions. Journal of Volcanology and Geothermal Research 2008, 174:1-8.
48. Moore K.R., Wood B.J. The transition from carbonate to silicate melts in the CaO-MgO-SiO2-CO2 system. Journal of Petrology 1998, 39:1943-1951.
49. Navon O. Diamond formation in the Earth's mantle. VII International Kimberlite Conference 2 1999, 584-604. Red roof design, Cape Town. J.J. Gurney, J.L. Gurney, M.D. Pascoe, S.H. Richadson (Eds.).
50. Nechaev D.V., Khokhryakov A.F. Formation of epigenetic graphite inclusions in diamond crystals: experimental data. Russian Geology and Geophysics 2013, 54:399-405.
51. Nickel K.G., Green D.H. Empirical geothermo-barometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters 1985, 73:158-170.
52. Palyanov Y.N., Sokol A.G. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 2009, 112:690-700.
53. Palyanov Y.N., Shatsky V.S., Sobolev N.V., Sokol A.G. The role of mantle ultrapotassic fluids in diamond formation. Proceedings of the National Academy of Sciences of the United States of America 2007, 104:9122-9127.
54. Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F., Kupriyanov I.N., Sokol A.G. Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth & Design 2010, 10:3169-3175.
55. Palyanov Yu.N., Sokol A.G., Khokhryakov A.F., Kruk A.N. Conditions of diamond crystallization in kimberlite melt: experimental data. Russian Geology and Geophysics 2015, 56:196-210.
56. Pearson D.G., Canil D., Shirey S.B. Mantle samples included in volcanic rocks: xenoliths and diamonds. Treatise on Geochemistry (Second Edition) 2014, 3(5):169-253.
57. Pearson D.G., Wittig N. The formation and evolution of cratonic mantle lithosphere - evidence from mantle xenoliths. Treatise on Geochemistry (Second Edition) 2014, 3(6):255-292.
58. Rohrbach A., Schmidt M.W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 2011, 472:209-212.
59. Sharygin I.S., Litasov K.D., Shatskiy A., Golovin A., Ohtani E., Pokhilenko N.P. Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0-6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Research 2015, 28:1391-1414.
60. Shatskiy A., Litasov K.D., Borzdov Y.M., Katsura T., Yamazaki D., Ohtani E. Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24 GPa: implication for the melt transport by dissolution-precipitation in the transition zone and uppermost lower mantle. Physics of the Earth and Planetary Interiors 2013, 225:1-11.
61. Shatskiy A.F., Litasov K.D., Palyanov Yu.N. Phase relations in carbonate systems under lithospheric mantle PT conditions: review experimental data. Russian Geology and Geophysics 2015, 56:113-142.
62. Sobolev N.V., Lavrentev Yu.G., Pospelova L.N., Sobolev E.V. Chrome pyropes from Yakutian diamonds. Doklady Akademii Nauk SSSR 1969, 189:162-165. (in Russian).
63. Sobolev V.N., Taylor L.A., Snyder G.A., Sobolev N.V., Pokhilenko N.P., Kharkiv A.D. A unique metasomatized peridotite xenolith from the Mir kimberlite, Siberian Platform. Russian Geology and Geophysics 1997, 38:218-228.
64. Sobolev V.N., Taylor L.A., Snyder G.A., Jerde E.A., Neal C.R., Sobolev N.V. Quantifying the effects of metasomatism of mantle xenoliths: constraints from secondary chemistry and mineralogy in Udachnaya eclogites, Yakutia. International Geology Review 1999, 41:391-416.
65. Sokol A.G., Kruk A.N. Conditions of kimberlite magma generation: experimental constraints. Russian Geology and Geophysics 2015, 56:245-259.
66. Sokol A.G., Kupriyanov I.N., Palyanov Yu.N., Kruk A.N., Sobolev N.V. Melting experiments on the Udachnaya kimberlite at 6.3-7.5 GPa: implications for the role of H2O in magma generation and formation of hydrous olivine. Geochimica et Cosmochimica Acta 2013, 101:133-155.
67. Sokol A.G., Kupriyanov I.N., Palyanov Yu.N. Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400 °C: implications for kimberlite formation. Earth and Planetary Science Letters 2013, 383:58-67.
68. Sokol A.G., Kruk A.N., Palyanov Yu.N. The role of water in generation of group II kimberlite magmas: constraints from multiple saturation experiments. American Mineralogist 2014, 99:2292-2302.
69. Sokol A.G., Kruk A.N., Chebotarev D.A., Palyanov Yu.N., Sobolev N.V. Conditions of carbonatization and wehrlitization lithospheric peridotites in their interaction with carbonatite melt. Doklady Earth Sciences 2015, 465:1262-1267.
70. Sokol A.G., Borzdov Yu.M., Palyanov Yu.N., Khokhryakov A.F. High temperature calibration a multi-anvil high-pressure apparatus. High Pressure Research 2015, 35:139-147.
71. Sokol A.G., Kruk A.N., Chebotarev D.A., Palyanov Yu.N., Sobolev N.V. Composition of garnet as an indicator of the interaction conditions peridotite-carbonatite in subcratonic lithosphere (experimental data). Doklady Earth Sciences 2015, 463:746-750.
72. Solov'eva L.V., Kalashnikova T.V., Kostrovitsky S.I., Suvorova L.F. Zoning of garnets in deformed peridotites from the Udachnaya kimberlite pipe. Doklady Earth Sciences 2014, 457:997-1002.
73. Stachel T., Harris J.W. The origin of cratonic diamonds - constraints from mineral inclusions. Ore Geology Reviews 2008, 34:5-32.
74. Stagno V., Ojwang D.O., McCammon C.A., Frost D.J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 2013, 493:84-88.
75. Tappe S., Foley S.F., Kjarsgaard B.A., Romer R.L., Heaman L.M., Stracke A., Jenner G.A. Between carbonatite and lamproite-diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochimica et Cosmochimica Acta 2008, 72:3258-3286.
76. Thibault Y., Edgar A.D., Lloyd F.E. Experimental investigation of melts from a carbonated phlogopite lherzolite - implications for metasomatism in the continental lithospheric mantle. American Mineralogist 1992, 77:784-794.
77. Ulmer P., Sweeney R.J. Generation and differentiation of group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochimica et Cosmochimica Acta 2002, 66:2139-2153.
78. Wallace M.E., Green D.H. An experimental determination of primary carbonatite magma composition. Nature 1988, 335:343-346.
79. Wyllie P.J. Magmas and volatile components. American Mineralogist 1979, 64:469-500.
80. Wyllie P.J. The origin of kimberlite. Journal of Geophysical Research 1980, 85:6902-6910.
81. Yaxley G.M., Berry A.J., Kamenetsky V.S., Woodland A.B., Golovin A.V. An oxygen fugacity profile through the Siberian Craton - Fe K-edge XANES determinations of Fe3+/SFe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 2012, 140:142-151.
82. Zedgenizov D.A., Ragozin A.L., Shatsky V.S., Araujo D., Griffin W.L., Kagi H. Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 2009, 112(Suppl. 2):638-647.