Инд. авторы: Khoury H.N., Sokol E.V., Kokh S.N., Seryotkin Y.V., Kozmenko O.A., Goryainov S.V., Clark I.D.
Заглавие: Intermediate members of the lime-monteponite solid solutions (Ca1-xCdxO, x = 0.36-0.55): Discovery in natural occurrence
Библ. ссылка: Khoury H.N., Sokol E.V., Kokh S.N., Seryotkin Y.V., Kozmenko O.A., Goryainov S.V., Clark I.D. Intermediate members of the lime-monteponite solid solutions (Ca1-xCdxO, x = 0.36-0.55): Discovery in natural occurrence // American Mineralogist. - 2016. - Vol.101. - Iss. 1. - P.146-161. - ISSN 0003-004X. - EISSN 1945-3027.
Идентиф-ры: DOI: 10.2138/am-2016-5361; РИНЦ: 26827203; SCOPUS: 2-s2.0-84955259212; WoS: 000370213500014;
Реферат: eng: Lime-monteponite solid solutions [(Ca,Cd)O ss] with 58.5-73.3 wt% CdO were discovered as an accessory phase in medium-temperature combustion metamorphic (CM) spurrite-fluorellestadite/ fluorapatite marbles from central Jordan. The type locality is situated in the northern part of the Siwaqa complex (Tulul Al Hammam area), the largest area of the 'Mottled Zone' Formation in the Dead Sea region. The marbles were derived from bitumen-rich calcareous marine sediments of the Muwaqqar Chalk Marl Formation, which have high Cd, Zn, U, and Ni enrichments and contain Cd-rich wurtzite and sphalerite. Oxidative sintering of these sediments at 800-850 °C gave rise to unusual oxide accessories: lime-monteponite solid solutions, Cd-bearing Ca and Zn aluminate - tululite, zincite, and Zn-, Ni-, and Cu-rich periclase. Cadmium incorporation into different oxides was controlled by steric factors, while Cd[6] → Ca[6] was the principal isomorphic substitution. The intermediate members (Ca0.645Cd0.355)O-(Ca0.453Cd0.547)O with a halite-type structure have a cadmium incorporation ratio (KCd = Cdmineral/Cdrock) of about 843 and are the main sites for cadmium in CM marbles. In supergene environments, at low water/rock ratios, (Ca1-xCdx)(OH)2 ss (x ≤ 0.5) constitute the main secondary phase after (Ca,Cd)O ss. At higher water/rock ratios and in the presence of Cl- and F- in the solutions, calcium, and cadmium precipitated as separate phases fluorite (CaF2) and basic cadmium chloride [Cd(OH)2-xClx)]. A part of cadmium becomes retained in calcium silicate hydrates. The common occurrence of anhydrous (Ca,Cd)O grains in natural rocks, only partly altered to (Ca,Cd)-hydroxide after at least 100 ka exposure to weather and climate, proves that both phases are effective long-term Cd immobilizers. © 2016 by Walter de Gruyter Berlin/Boston.
Ключевые слова: Lime-monteponite CaO-CdO solid solution; hydrous alteration; cadmium enrichment; combustion metamorphism; central Jordan;
Издано: 2016
Физ. хар-ка: с.146-161
Цитирование: 1. Abed A. (2012). Review of uranium in the Jordanian phosphorites: Distribution, genesis and industry. Jordan Journal of Earth and Environmental Sciences, 4, 35-45
2. Abed A., and Sadaqah R. (2013). Enrichment of uranium in the uppermost Al-Hisa Phosphorite Formation, Eshidiyya basin, Southern Jordan. Journal of African Earth Sciences, 77, 31-40
3. Abed A.M., Arouri K.R., and Boreham C.J. (2005). Source rock potential of the phosphorite-bituminous chalk-marl sequence in Jordan. Marine and Petroleum Geology, 22, 413-425
4. Achternbosch M., Bräutigam K.-R., Hartlieb N., Kupsch C., Richers U., and Stemmermann P. (2003). Heavy metals in cement and concrete resulting from the co-incineration of wastes in cement kilns with regard to the legitimacy of waste utilization, 200 p. Forschungszentrum Karlsruhe in Der Helmholtz-Ge-meinschaft Wissenschaftliche Berichte FZKA 6923. Umwelt Bundes Amt. Germany, http://www.coprocem.com/documents/uba-karlsruhe.pdf
5. Alexander W.R., and Smellie J.A.T. (1998). Maqarin natural analog project: ANDRA, CEA, NAGRA, NIREX and SKB synthesis report on phases I, II and III. 101 p. Scientific Technical Report NPB 98-08. Nagra, Wettingen, Switzerland
6. Alexander W.R., Dayal R., Eagleson K., Eikenberg J., Hamilton E., Linklater C.M., McKinley I.G., and Tweed C.J. (1992). A natural analog of high pH cement pore waters from the Maqarin area of Northern Jordan II: results of predictive geochemical calculations. Journal of Geochemical Exploration, 46, 133-146
7. Bakke J.R., Hägglund C., Jung H.J., Sinclair R., and Bent S.F. (2013). Atomic layer deposition of CdO and CdxZn1-xO films. Materials Chemistry and Physics, 140, 465-471
8. Balchev N. (1994). Superconductivity in Cd-Ba-Ca-Cu-O system. Applied Super-conductivity, 2, 435-436
9. Barros A.M., Tenório J.A.S., and Espinosa D.C.R. (2004). Evaluation of the incorporation ratio of ZnO, PbO and CdO into cement clinker. Journal of Hazardous Materials, B, 112, 71-78
10. Bender F. (1968). Geologie von Jordanien. Beiträge zur Regionalen Geologie Der Erde, Band 7. Gebrüder Bornträger; Berlin
11. Bowen N.L. (1940). Progressive metamorphism of siliceous limestone and dolo-mite. Journal of Geology, 48, 225-274
12. Brese N.E., and O Keeffe M. (1991). Bond-valence parameters for solids. Acta Crystallographica, B47, 192-197
13. Brumsack H.-J. (2006). The trace metal content of recent organic carbon-rich sed-iments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344-361
14. Cartledge F.K., Butler L.G., Chalasani D., Eaton H.C., Frey F.P., Herrera E., Tittlebaum M.E., and Yang S.-L. (1990). Immobilization mechanisms in solidification/stabilization of Cd and Pb salts using Portland cement fixing agents. Environmental Science and Technology, 24, 867-873
15. Chandiramouli R., and Jeyaprakash B.G. (2013). Review of CdO thin films. Solid State Sciences, 16, 102-110
16. Chaplygin I.V., Mozgova N.N., Bryzgalov I.A., and Mokhov A.V. (2004). Cadmoindite, CdIn2S4, a new mineral from Kudriavy volcano, Iturup Isle, Kurily Islands. Proceedings of the Russian Mineralogical Society, 133 (4), 21-27 (in Russian
17. Chaplygin I.V., Mozgova N.N., Bryzgalov I.A., Makovicky E., Balić-Žunić T., Magazina L.O., Kuznetsova O.Yu., and Safonov, Yu.G. (2005). Kudriavite (Cd,Pb)Bi2S4, a new mineral species from Kudriavy volcano, Iturup Island, Kuriles. Canadian Mineralogist, 43, 695-701
18. Chaplygin I.V., Mozgova N.N., Mokhov A.V., Koporulina E.V., Bernhardt H.-J., and Bryzgalov I.A. (2007). Minerals of the system ZnS-CdS from fumaroles of the Kudriavy volcano, Iturup Island, Kuriles, Russia. Canadian Mineralogist, 45, 709-722
19. Chesnokov B.V., and Shcherbakova E.P. (1991). Mineralogy of the Burnt Dumps of the Chelyabinsk Coal Basin: an experience in technogenic mineralogy, 152 p. Nauka, Moscow (in Russian
20. Chesnokov B., Kotrly M., and Nisanbajev T. (1998). Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken-eine reiche Mineralienküche. Mineralien-Welt, 9, 54-63 (in German
21. Clark I.D., Fritz P., Milodowski A.E., and Khoury H.N. (1992). Sampling and analytical methods in: A natural analog study of the Maqarin hyperalkaline groundwaters. Nagra Technical Report 91-10, Wettingen, Switzerland, pp. 19-40
22. De Waele J., and Forti P. (2005). Mineralogy of mine caves in Sardinia (Italy). In Proceedings of the 14th International Congress of Speleology, Kalamos, Greece, vol. 2, 306-311 (abstract
23. De Waele J., Forti P., and Naseddu A. (1999). Le Grotte di Miniera: patrimonio scientifico e risorsa turistica. In Atti del Convegno Internazionale di Studio Paesaggio Minerario Cagliari, 7-10 Ottobre 1999, abstract
24. Deer W.A., Howie R.A., and Zussman J. (1992). An Introduction to the Rock Forming Minerals, 2nd excerpted student edition, 696 p. Longman, Burnt Mill, Essex
25. Delgadillo-Hinojosa F., Macías-Zamora J.V., Segovia-Zavala J.A., and Tor-res-Valdés S. (2001). Cadmium enrichment in the Gulf of California. Marine Chemistry, 75, 109-122
26. Diez J.M., Madrid J., and Macias A. (1997). Characterization of cement-stabilized Cd wastes. Cement and Concrete Research, 27, 337-343
27. Dobbe R.T.M. (1992). Manganoan-cadmian tetrahedrite from the Tunaberg Cu-Co deposit, Berglagen, central Sweden. Mineralogical Magazine, 56, 113-115
28. Duan Y., Qin L., Tang G., and Shi L. (2008). First-principles study of ground-and metastable-state properties of XO (X = Be, Mg, Ca, Sr, Ba, Zn and Cd). The European Physical Journal B, 66, 201-209
29. Elie M., Techer I., Trotignon L., Khoury H., Salameh E., Vandamme D., Boulvais P., and Fourcade S. (2007). Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part II: Organic matter evolution, magnetic susceptibility and metals (Ti, Cr, Fe) at the Khushaym Matruck natural analog (central Jordan). Applied Geochemistry, 22, 1311-1328
30. adeeva V.P., Tikhova V.D., and Nikulicheva O.N. (2008). Elemental analysis of organic compounds with the use of automated CHNS analyzers. Journal of Analytical Chemistry, 63, 1094-1106
31. iquet G., Richet P., and Montagnac J. (1999). High-temperature thermal ex-pansion of lime, periclase, corundum and spinel. Physics and Chemistry of Minerals, 27, 103-111
32. leischer M. (1966). New mineral names. American Mineralogist, 51, 1815-1820
33. leurance S., Cuney M., Malartre M., and Reyx J. (2013). Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous-Ear-ly Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201-219
34. orti P. (1985). Alcuni nuovi minerali carsici dell Iglesiente. Notiziario di Mine-ralogia e Paleontologia, 44, 3-10
35. orti P., and Perna G. (1988). Genesi della monteponite di Monteponi. Rivista Italiana di Mineralogia, 1, 45-51
36. ourcade S., Trotignon L., Boulvais P., Techer I., Elie M., Vandamme D., Salameh E., and Khoury H. (2007). Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part I: Isotopic (C, O) study of the Khushaym Matruk natural analog (central Jordan). Applied Geochemistry, 22, 1293-1310
37. Galuskin E.V., Kusz J., Armbruster T., Galuskina I.O., Marzec K., Vapnik Y., and Murashko M. (2013). Vorlanite, (CaU6+)O4, from Jabel Harmun, Palestinian Autonomy, Israel. American Mineralogist, 98, 1938-1942
38. Galuskin E., Galuskina I., Kusz J., Armbruster T., Marzec K., Dzierzanowski P., and Murashko M. (2014). Vapnikite Ca3UO6 - A new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 78, 571-581
39. Galuskin E.V., Gfeller F., Galuskina I.O., Armbruster T., Bailau R., and Shary-gin V.V. (2015). Mayenite supergroup, part I: Recommended nomenclature. European Journal of Mineralogy, 27, 99-111
40. Gineys N., Aouad G., and Damidot D. (2011a). Managing trace elements in Portland cement-Part II: Comparison of two methods to incorporate Zn in a cement. Cement and Concrete Composites, 33, 629-636
41. Gineys N., Aouad G., Sorrentino F., and Damidot D. (2011b). Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn. Cement and Concrete Research, 41, 1177-1184
42. Goryainov S.V., Krylov A.S., Pan, Yu., Madyukov I.A., Smirnov M.B., and Vtyurin A.N. (2012). Raman investigation of hydrostatic and nonhydrostatic compressions of OH-and F-apophyllites up to 8 GPa. Journal of Raman Spectroscopy, 43, 439-447
43. Goryainov S.V., Likhacheva A.Y., Rashchenko S.V., Shubin A.S., Afanasiev V.P., and Pokhilenko N.P. (2014). Raman identification of lonsdaleite in Popigai impactites. Journal of Raman Spectroscopy, 45, 305-313
44. Grapes R. (2011). Pyrometamorphism, second edition, 290 p. Springer, Berlin
45. Gross S. (1977). The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 1-80
46. Hatert F., and Burke E.A.J. (2008). The IMA-CNMNC dominant-constituent rule revisited and extended. Canadian Mineralogist, 46, 717-728
47. Herrera E., Tittlebaum M., Cartledge F., and Eaton H. (1992). Evaluation of the leaching properties of solidified heavy metal wastes. Journal of Environmental Science and Health, Part A, 27, 983-998
48. Humphries D.W. (1992). The preparation of thin sections of rocks, minerals and ceramics p. 83. Royal Microscopical Society, Oxford Science Publications, Microscopy Handbooks (Book 24
49. Janusz W. (1991). Adsorption and precipitation processes in the cadmium oxide/aqueous NaCl or NaClO4 solution system. Journal of Colloid and Interface Science, 145, 119-126
50. Khoury H. (2012). Long-term analog of carbonation in travertine from Uleimat Quarries, central Jordan. Environmental Earth Sciences, 65, 1909-1916
51. Khoury H.N., and Al-Zoubi A.S. (2014). Origin and characteristics of Cr-smectite from Suweileh area, Jordan. Applied Clay Science, 90, 43-52
52. Khoury H., and Nassir S. (1982a). A discussion on the origin of Daba-Siwaqa marble. Dirasat, 9, 55-56
53. Khoury H., and Nassir S. (1982b). High temperature mineralization in Maqarin area, North Jordan. Neues Jahrbuch für Mineralogie (Abhandlungen), 144, 197-213
54. Khoury H.N., Salameh E., Clark I.D., Fritz R., Bajjali W., Miolodwski A., Cave M., and Alexander W. (1992). A natural analog of high pH waters from the Maqarin area of Northern Jordan 1: Introduction to the site. Journal of Geochemical Exploration, 46, 117-132
55. Khoury H., Trotignon L., Techer I., Elie M., Salameh E., Bienvenu P., Boulvais P., Didot A., Félines I., Fontanini L., and others. (2011). A natural analog study of cement buffered, hyperalkaline groundwaters and their interaction with a repository host rock IV: an examination of the Khushaym Matruk (central Jordan) and Maqarin (northern Jordan) sites. In A. Pitty and R. Alexander, Eds., Khushaym Matruk, chapter 6. NDA-RWMD Technical Report U.K
56. Khoury H., Salameh E., and Clark I. (2014a). Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Applied Geochemistry, 43, 49-65
57. Khoury H., Sokol E., Kokh S.N., and Clark I. (2014b). High-temperature Cd-Ca oxide-the first finding in nature: case study in the varicolored marble of Jor-dan. In The International Conference Humboldt Kolleg: Building International Network for Enhancement of Research in Jordan, Abstract Volume, 156
58. Khoury H., Sokol E., and Clark I. (2015a). Calcium uranium oxides from Central Jordan: Mineral assemblages, chemistry, and alteration products. Canadian Mineralogist, 53(1), 61-82
59. Khoury H.N., Sokol E.V., Kokh S.N., Seryotkin Y.V., Nigmatulina E.N., Go-ryainov S.V., Belogub E.V., and Clark I.D. (2015b). Tululite, IMA 2014-065. CNMNC Newsletter No. 23, February 2015, p. 53; Mineralogical Magazine, 79(1), 51-58
60. Kokh S.N., Sokol E.V., and Sharygin V.V. (2015). Ellestadite-group minerals in combustion metamorphic rocks. In G.B. Stracher A. Prakash, and E.V. Sokol, Eds., Coal and Peat Fires: A Global Perspective, chapter 20, 3, p. 543-562. Elsevier, Amsterdam
61. Korzhinsky M.A., Tkachenko S.I., Shmulovich K.I., Taran Y.A., and Steinberg G.S. (2004). Discovery of a pure rhenium mineral at Kudriavy volcano. Nature, 369, 51-52
62. Lamoreaux R.H., and Hildebrand D.L. (1987). High-temperature vaporization behavior of oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd and Hg. Journal of Physical and Chemical Reference Data, 16, 419-443
63. Linke W.F., and Seidell A. (1965). Solubilities of Inorganic and Metal Organic Compounds, 4th ed., 1070 p. American Chemical Society, Washington D.C
64. Lisker S., Vaks A., Bar-Matthews M., Porat R., and Frumkin A. (2010). Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quaternary Science Reviews, 29, 1201-1211
65. Marks M.A.W., Wenzel T., Whitehouse M.J., Loose M., Zack T., Barth M., Worgard L., Krasz V., Eby G.N., Stosnach H., and Markl G. (2012). The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach. Chemical Geology, 291, 241-255
66. Milodowski A.E., Trotignon L., Khoury H., Salameh E., Arnal N., Bienvenu P., Bulle C., Chenery S.R., Crouzet N., Fontanini L., Hodgkinson E.S., Mäder U., McKervey J., Peycelon H., Pontremol S., Rassineux F., Raynal J., Rose J., Vandamme D., Provitina O., and Raimbault L. (2011). The analog cement zone (ACZ). In A. Pitty and R. Alexander, Eds., A Natural Analog Study of Cement Buffered, Hyperalkaline Groundwaters and their Interaction with a Repository Host Rock IV: an examination of the Khushaym Matruk (central Jordan) and Maqarin (northern Jordan) sites, Chapter 4. NDA-RWMD Techni-cal Report, NDA, Moors Row U.K
67. Miloua R., Kebbab Z., Miloua F., and Benramdane N. (2008). Ab initio investiga-tion of phase separation in Ca1-xZnxO alloys. Physics Letters A, 372, 1910-1914
68. Mollah M.Y.A., Vempati R.K., Lin T.C., and Cocke D.L. (1995). The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems. Waste Management, 15, 137-148
69. Morgan G.B., and London D. (2005). Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. American Mineralogist, 90, 1131-1138
70. Murat M., and Sorrentino F. (1996). Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal on the composition and the properties of the clinker and the cement. Cement and Concrete Research, 26, 377-385
71. Murtaza G., Amin B., Arif S., Maqbool M., Ahmad I., Afaq A., Nazir S., Imran M., and Haneef M. (2012). Structural, electronic and optical properties of CaxCd1-xO and its conversion from semimetal to wide bandgap semiconductor. Computational Materials Science, 58, 71-76
72. Nathan Y., Soudry D., Levy Y., Shitrit D., and Dorfman E. (1997). Geochemistry of cadmium in the Negev phosphorites. Chemical Geology, 142, 87-107
73. Nazir S., Ikram N., Amin B., Tanveer M., Shaukat A., and Saeed Y. (2009). Structural, electronic and optical calculations of CaxZn1-xO alloys: A first principles study. Journal of Physics and Chemistry of Solids, 70, 874-880
74. Oxford Diffraction. (2008). CrysAlisRED 171.37.35. Oxford Diffraction, Abing-don, England
75. Papike J.J. (1987). Chemistry of the rock-forming silicates: Ortho, ring, and single-chain structures. Reviews of Geophysics, 25, 1483-1526
76. Papike J.J. (1988). Chemistry of the rock-forming silicates: Multiple-chain, sheet, and framework structures. Reviews of Geophysics, 26, 407-444
77. Parat F., Dungan M.A., and Streck M.J. (2002). Anhydrite, pyrrhotite, and sulfur-rich apatite: tracing the sulfur evolution of an Oligocene andesite (Eagle Mountain, CO, USA). Lithos, 64, 63-75
78. Pattrick R.A.D. (1978). Microprobe analyses of cadmium-rich tetrahedrites from Tyndrum, Perhshire, Scotland. Mineralogical Magazine, 42, 286-288
79. Pattrick R.A.D., and Hall A.J. (1983). Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites. Mineralogical Magazine, 47, 441-451
80. Phedorin M.A., Bobrov V.A., Chebykin E.P., Goldberg E.L., Melgunov M.S., Filippova S.V., and Zolotarev K.V. (2000). Comparison of synchrotron radiation X ray fluorescence with conventional techniques for the analysis of sedimentary samples. Geostandards and Geoanalytical Research, 24, 205-216
81. Pomiés M.-P., Lequeux N., and Boch P. (2001a). Speciation of cadmium in cement: Part I. Cd2+ uptake by C-S-H. Cement and Concrete Research, 31, 563-569
82. Pomiés M.-P., Lequeux N., and Boch P. (2001b). Speciation of cadmium in cement: Part II. C3S hydration with Cd2+ solution. Cement and Concrete Research, 31, 571-576
83. Powell J.H., and Moh d, B.K. (2011). Evolution of Cretaceous to Eocene alluvial and carbonate platform sequences in central and South Jordan. GeoArabia, 16, 29-82
84. Rieder K.H., Weinstein B.A., Cardona M., and Bilz H. (1973). Measurement and comparative analysis of the second-order Raman spectra of the alkaline-earth oxides with a NaCl structure. Physical Review B, 8, 4780-4786
85. Rudnick R.L., and Gao S. (2003). Composition of the continental crust. In R.L. Rudnick, Ed., The Crust, 3, p. 1-64. Treatise on Geochemistry, Elsevier, Amsterdam
86. Schwartz M.O. (2000). Cadmium in zinc deposits: economic geology of a polluting element. International Geology Review, 42, 445-469
87. Sebastian P.J., and Calixto M.E. (2000). Porous CdS: CdO composite structure formed by screen printing and sintering of CdS in air. Thin Solid Films, 360, 128-132
88. Selby D., and Creaser R.A. (2003). Re-Os geochronology of organic rich sedi-ments: an evaluation of organic matter analysis methods. Chemical Geology, 200, 225-240
89. Shatsky V.S., Sitnikova E.S., Koz menko O.A., Palessky S.V., Nikolaeva I.V., and Zayachkovsky A.A. (2006). Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russian Geology and Geophysics, 47, 482-496
90. Sheldrick G.M. (2008). A short history of SHELX. Acta Crystallographica, A64, 112-122
91. Shieh S.R., and Duffy T.S. (2002). Raman spectroscopy of Co(OH)2 at high pressures: Implications for amorphization and hydrogen repulsion. Physical Review B, 66, 134301
92. Smyth J.R., Jacobsen S.D., and Hazen R.M. (2000). Comparative crystal chem-istry of dense oxide minerals. Reviews in Mineralogy and Geochemistry, 41, 157-186
93. Sokol E.V., Nigmatulina E.N., and Volkova N.I. (2002). Fluorine mineralization from burning coal spoil heaps in the Russian Urals. Mineralogy and Petrol-ogy, 75, 23-40
94. Sokol E.V., Maksimova N.V., Nigmatulina E.N., Sharygin V.V., and Kalugin V.M. (2005). Combustion Metamorphism, 284 p. Publishing House of the Siberian Branch of the Russian Academy of Science, Novosibirsk (in Russian
95. Sokol E.V., Gaskova O.L., Kokh S.N., Kozmenko O.A., Seryotkin, Yu.V., Vapnik, Ye., and Murashko M.N. (2011). Chromatite and its Cr3+-and Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone complex, Judean Desert. American Mineralogist, 96, 659-674
96. Sokol E.V., Kokh S.N., Vapnik, Ye., Thiéry V., and Korzhova S.A. (2014). Natural analogs of belite sulfoaluminate cement clinkers from Negev desert, Israel. American Mineralogist, 99, 1471-1487
97. Sprung S. (1985). Technological Problems in Pyroprocessing Cement Clinker: Cause and Solution, 1st ed. Beton-Verlag, Düsseldorf
98. Srihari V., Sridharan V., Chandra S., Sastry V.S., Sahu H.K., and Sundar C.S. (2011). Wide band gap tunability of bulk Cd1-xCaxO. Journal of Applied Phys-ics, 109, 013510
99. Taylor H.F.W. (1997). Cement Chemistry, 2nd ed., 459 p. Thomas Telford Ser-vices, London
100. Techer I., Khoury H.N., Salameh E., Rassineux F., Claude C., Clauer N., Pagel M., Lancelot J., Hamelin B., and Jacquot E. (2006). Propagation of high-alkaline fluids in an argillaceous formation: Case study of the Khushaym Matruk natural analog (Central Jordan). Journal of Geochemical Exploration, 90, 53-67
101. Tilley C.E. (1951). A note on the progressive metamorphism of siliceous limestones and dolomites. Geological Magazine, 88, 175-178
102. Treiman A.H., and Essene E.J. (1983). Phase equilibria in the system CaO-SiO2-CO2. American Journal of Science, 283-A, 97-120
103. Vaks A., Bar-Matthews M., Matthews A., Ayalon A., and Frumkin A. (2010). Middle-Late Quaternary paleoclimate of Northern margins of the Saharan-Arabian Desert: Reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews, 29, 2647-2662
104. Yang, Yu., Xue J., and Huang Q. (2014). Studies on the solidification mechanisms of Ni and Cd in cement clinker during cement kiln co-processing of hazardous wastes. Construction and Building Materials, 57, 138-143
105. Ye L., and Liu T. (1999). Sphalerite chemistry, Niujiaotang Cd-rich zinc deposit, Guizhou, Southwest China. Chaise Journal of Geochemistry, 18, 62-68
106. Ye L., Cook N.J., Liu T., Ciobanu C.L., Gao W., and Yang Y. (2012). The Niujiaotang Cd-rich zinc deposit, Duyun, Guizhou province, Southwest China: Ore genesis and mechanisms of cadmium concentration. Mineralium Deposita, 47, 683-700
107. Yogeeswaran G., Chenthamarakshan C.R., Seshadri A., De Tacconi N.R., and Rajeshwar K. (2006). Cathodic electrodeposition in the ternary Zn-Cd-O system: mixed (ZnO)x(CdO)1-x film formation versus Cd-doping of ZnO films. Thin Solid Films, 515, 2464-2470
108. Zambonini F. (1936). Mineralogia vesuviana. In E. Quercigh, Ed., Atti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli, 2nd ed., p. 436. Rosenberg & Sellier Publishers, Torino
109. Zateeva S.N., Sokol E.V., and Sharygin V.V. (2007). Specificity of pyrometamor-phic minerals of the ellestadite group. Geology of Ore Deposits, 49, 792-805
110. Zhang J. (1999). Room-temperature compressibilities of MnO and CdO: Further examination of the role of cation type in bulk modulus systematics. Physics and Chemistry of Minerals, 26, 644-648
111. Ziegler M.A. (2001). Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia, 6, 445-505