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Abstract

After summarizing the phenomenology of pressure amorphization (PA), we present a theory of PA based on the

notion that one or more branches of the phonon spectrum soften and flatten with increasing pressure. The theory

expresses the anharmonic dynamics of the flat branches in terms of local modes, represented by lattice Wannier

functions, which are in turn used to construct an effective Hamiltonian. When the low-pressure structure becomes

metastable with respect to the high-pressure equilibrium phase and the relevant branches are sufficiently flat, trans-

formation into an amorphous phase is shown to be kinetically favored because of the exponentially large number of

both amorphous phases and reaction pathways. In effect, the critical-size nucleus for the first-order phase transition is

found to be reduced to a single unit cell, or nearly so. Random nucleation into symmetrically equivalent local con-

figurations characteristic of the high-pressure structure is then shown to overwhelm any possible domain growth, and

an ‘amorphous’ structure results.

� 2002 Elsevier Science B.V. All rights reserved.

PACS: 61.50.Ks; 61.43.Fs; 64.70.Pf

1. Introduction

Since its first observation in Gd2ðM2O4Þ in 1972
[1], and especially in ice nearly twenty years ago
[2], amorphization induced by pressure (or ‘pres-
sure amorphization’, PA) has been discovered
in materials of essentially all binding types, from
ionic to metallic, which have more than one atom
per primitive cell. The disappearance of the X-ray
diffraction pattern of the low-pressure crystalline
phase, or a concomitant broadening of peaks in

the vibrational spectra, is taken to be evidence of
an emerging amorphous state. These signatures
typically appear within a pressure window whose
average value and overall range are strongly ma-
terial dependent.
The phenomenology and simulations of mate-

rials displaying pressure amorphization have been
thoroughly reviewed [3–7]. It is not sufficiently
generally recognized within that extensive litera-
ture that there are two distinct classes of materials
which could be labelled as pressure amorphized. In
the first, a conventional glass, the atomic structure
is not topologically equivalent to any crystalline
structure. In the second, random displacements of
the nuclei occur which do not destroy crystalline
topology.
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Despite extensive investigation, and in part be-
cause the above distinction has not been clearly
made, a general physical picture of the microscopic
processes underlying PA has yet to emerge. On the
theoretical side, the main efforts have focused on
two materials exhibiting the second class of PA, a-
SiO2 (a-quartz) [8–17] and a-AlPO4 [10,13,18,19].
Both interatomic potentials and fully first-princi-
ples approaches have been used to study these
systems. While it remains uncertain whether PA
has been actually observed in a simulation, it seems
to be generally accepted that there is a correlation
between pressure amorphization and the soften-
ing (i.e., phonon frequencies approaching zero) of
a nearly dispersionless, or flat, acoustic phonon
branch. In addition, it has been suggested that
the occurrence of an amorphous phase should be
strongly related to the dynamics of the system
[10,17].
In this paper, we discuss an explicit model for

materials exhibiting the second class of PA. On the
basis of inferences drawn from both phenome-
nology and simulations, we first argue that these
materials share many common features and then
show how to construct an effective Hamilto-
nian that incorporates these features. As we dem-
onstrate, this microscopic model is simple enough
to analyze in detail yet still relevant to real mate-
rials.
The paper is organized as follows. In Section 2

we discuss the elements of our theory of PA on the
basis of both phenomenology and simulations. In
Section 3 we review some elements of lattice vi-
bration theory. In Section 4, we present an effec-
tive Hamiltonian suitable for the discussion of the
physics underlying PA, and reduce it to the sim-
plest model capable of incorporating the essential
features discussed in Section 2. In Section 5, we
describe how PA is manifested in the simple model
through an analysis of the topology of the model’s
potential energy surfaces. Sections 6–8 address the
conditions for the occurrence of pressure amor-
phization in the 2-site, 3-site, and N-site models
respectively. In Section 9, we discuss the relation
of our considerations to conventional nucleation
and growth models of structural transitions. We
summarize our results and draw conclusions in
Section 10.

2. Phenomenology and simulations

Many transition patterns have been observed
during pressure amorphization [3,5,6]. Of these, we
select five (types I–V) for explicit discussion.
Type I materials transform from a crystalline

phase C to an amorphous phase a at pressure
p ¼ pca. Then, after p is reduced from above pca,
they remain amorphous down to a lower pressure
pac, below which they revert to C, as is the case, for
example, in AlPO4 [18]. (The hysteresis pca � pac
is large, typically of the order of pca itself.) Mate-
rials of type II remain amorphous upon release of
pressure, making possible detailed examination of
the properties of the amorphous phase. This ap-
pears to be the case for amorphous a-SiO2, which
has been found to retain elastic anisotropy [20,21].
Another example is crystalline Fe2SiO4-fayalite,
which is antiferromagnetic; the pressure-amor-
phized fayalite remains antiferromagnetic with the
N�eeel temperature essentially unchanged [22–24],
from which we infer that the a- and C-phase to-
pologies are the same. Type III materials become
amorphous above pca, later transforming to a new
crystal structure C0 when p is held steady above pca
for sufficiently long. Materials of type IV behave
the same as those of type I as p is reduced from
above pca, but they transform to a new crystal
structure C0 from the amorphous phase a when
pressure is increased beyond pac0 > pca. Finally,
materials of type V transform to C0 at pac0 upon
decompression from above pac, finally reverting to
C below pcc0 .
As already mentioned in the Introduction, lat-

tice dynamical calculations have shown a con-
siderable softening of the entire lowest band of
a-quartz, with a soft mode instability occurring
first at the zone boundary at pressures at which PA
is observed [12,16] or at somewhat higher pres-
sures [15]. Also, it has been argued that the tran-
sition mechanism in a-AlPO4 is similar to that of
a-quartz [10,19].
From the phenomenology and calculations de-

scribed above, the following picture of PA emer-
ges: The random displacements in the amorphous
phase are associated with the incipient instability
of at least one nearly flat phonon branch. The
amorphous phase is the result of a kinetically
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hindered transition between two closely related
crystalline phases C and C0, where C is a low-
pressure crystalline phase and C0 is a high-pressure
one. The transition from C to C0 is expected to be
strongly first order, and also displacive, meaning
that the atomic structure of a remains topologi-
cally equivalent to that of C. (This latter feature is
to be contrasted with the significant changes in
topology that usually accompany ordinary glass
formation.) In the amorphous phase a, random
displacements are large enough to eliminate the
diffraction pattern through reduction of the De-
bye–Waller factor, but not so large so as to disrupt
the topology of the crystal structure associated
with C.

3. Nearly flat branches: local modes as lattice

Wannier functions

Let us assume that we can work in the Born–
Oppenheimer approximation, supressing all the
electronic degress of freedom. The Hamiltonian is,
then,

H ½P ;R� ¼ T ½P � þ V ½R�; ð1Þ

where P and R are the sets of nuclear momenta
and positions. T[P] is the nuclear kinetic energy,

T ½P � ¼
X
i

P 2i
2Mi

; ð2Þ

where Pi is the momentum of the ith nucleus and
Mi is its mass. V[R] is the nuclear potential energy

V ½R� ¼ E½R� þ VNN½R�; ð3Þ
where E[R] is the electronic ground state energy
and VNN[R] the internuclear interaction energy for
configuration R.
Let R0 be a set of positions corresponding to a

local minimum of the energy that we choose as a
reference (e.g. the low-pressure phase C). Suppose
that R differs from R0 through the uniform strain
tensor � and the nuclear displacements u0:

R ¼ R0 	 ð1þ �Þ þ u0; ð4Þ
where all site, vector, and tensor indices are un-
derstood, and the dot product implies a sum over

all relevant site and component indices. 1 Ex-
panding V to second degree in � and u0, we get

V ½R� ¼ V ½R0� þ
1

2
u0 	 o

2V ½R0�
ou0 ou0

	 u0

þ u0 	 o
2V ½R0�
ou0 o�

	 �þ 1
2
� 	 o

2V ½R0�
o�o�

	 �: ð5Þ

Making the substitution u0 ¼ uþ u0 with

u0 ¼ � o2V
ou0 ou0

� ��1

	 o2V
ou0 o�

	 �; ð6Þ

we obtain

H ¼ T þ 1
2
u 	 o2V

ou0ou0
	 uþ 1

2
� 	 C 	 �; ð7Þ

where

C ¼ o2V
o�o�

� o2V
o�ou0

	 o2V
ou0 ou0

� ��1

	 o2V
ou0 o�

: ð8Þ

Thus, when o2V =ou0ou0 becomes soft, that is,
when it has eigenvalues which are nearly zero, C
will also become soft according to Eq. (8), provided
the corresponding eigenfunctions of o2V =ou0ou0

couple to �. It is the reciprocals of these soft ei-
genvalues which enter the second term on the right
in Eq. (8), which grows in magnitude as o2V =ou0ou0

becomes softer and ultimately causes one or more
principal components of C to vanish before o2V =
ou0ou0 becomes unstable. In materials exhibiting
PA, the modes which soften under pressure will
couple to strains associated with elastic moduli that
likewise soften under pressure [9]. We can thus
focus primarily on the softening of o2V =ou0ou0 and
treat the strains implicitly, recognizing that the u
in Eq. (7) contains them.
The transformation

Xkk ¼
X
la

expðikRlÞSkaðkÞula ð9Þ

diagonalizes H. In Eq. (9), the site index of Eq. (2)
has been decomposed into a unit cell index l, with

1 To avoid redundancy or triviality, uniform translations of

the entire structure and displacements arising from uniform

strain are excluded from u0.
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Rl the center of the lth cell, and an internal index a.
k is the branch index of the normal mode kk, k its
wave vector in the first Brillouin zone, and SkaðkÞ is
a unitary matrix for each k. The squares of the
corresponding normal-mode frequencies xkk are
eigenvalues of the dynamical matrix M�1=2 	 o2V =
ou0ou0 	M�1=2. Thus if xkk has a soft, flat branch in
which xkk ! 0 for much of the Brillouin zone, so
does o2V =ou0ou0, as the mass matrix M is positive
definite. Besides that of a-quartz under compres-
sion, there are other known examples of soft, flat
branches. In the perovskite ferroelectrics, for ex-
ample, there are optical branches which are un-
stable in the high-symmetry cubic structure, which,
in that case, result in a ferroelectric phase transi-
tion [25].
We suppose that the subset flg of the set fkg of

all branches are soft and flat. We construct their
associated lattice Wannier functions [26] from the
corresponding normal modes via the transforma-
tion

Ylb ¼ 1

N

X
kk2flg

AbkðkÞ expð�ikRlÞXkk ¼
X
ma

Slb;mauma:

ð10Þ
Since the Slb;ma decay exponentially in jRm � Rlj,

the Ylb are local modes, optimally localized by
proper choice of the phases and amplitudes of
the unitary matrix elements AbkðkÞ; the flatter the
branches flg, the more localized. In the Einstein
limit of zero dispersion, the Ylb are confined to a
single cell. Also, the Hamiltonian contains no har-
monic coupling between Ylb and Xkk0 for those k0

not contained in flg. These local modes form a
basis for the construction of an effective Hamil-
tonian [26] much easier to use for simulations
[27,28] and, in our case, much easier to model than
the original Hamiltonian.

4. The model Hamiltonian

Ignoring the uniform strain �, the Hamiltonian
in Eq. (1) can be decomposed into contributions
from the soft flat branches flg, the remaining
branches fl0g, and their interaction arising from
anharmonicity in V[R]:

H ¼ Hflg þ Hfl0g þ Hflgfl0g: ð11Þ
In developing the model Hamiltonian, only the

contribution of the soft, flat branches, Hflg, is
considered explicitly. Hfl0g is replaced implicitly by
the Hamiltonian of a thermal reservoir at tem-
perature T and Hflgfl0gis replaced by an appro-
priate coupling of the flg to the reservoir.
In what follows we drop the subscript flg from

Hflg. The dependence of the potential V on the
local mode amplitudes Ylb can be expressed as a
cluster expansion so that H takes the form

H ¼
X
lb

P 2lb
2Mb

þ
X
l

VlðYlbÞ þ
X
l 6¼m

VlmðYlb; Ymb0 Þ

þ
X
l 6¼m6¼n

VlmnðYlb; Ymb0 ; Ynb00 Þ þ OðY 4Þ; ð12Þ

where b; b0; b00; . . . 2 flg. We now assume all es-
sential physics remains if we limit the anharmo-
nicity to the local term VlðYlbÞ, a restriction which
simplifies H to

H ¼
X
lb

P 2lb
2Mb

þ
X
l

VlðYlbÞ

þ 1
2

X
l 6¼m

V bb0

lm ðYlb � YmbÞðYlb0 � Ymb0 Þ: ð13Þ

If we now suppose that only a single branch
becomes soft and flat, H further simplifies, after
dropping the index b, to

H ¼
X
l

P 2l
2M

þ
X
l

VlðYlÞ þ
1

2

X
l 6¼m

VlmðYl � YmÞ2:

ð14Þ
As described in the Section 2, we are dealing

with strongly first-order phase transitions. The
simplest functional dependence of VlðYlÞ which can
lead to such phase transitions is that of a sixth
degree polynomial,

Vl ¼
1

2
AY 2l � 1

4
BY 4l þ 1

6
CY 6l ; ð15Þ

where B and C are positive, and A can be positive
or negative. Not enough is gained by including
coefficients Vlm beyond nearest neighbors to war-
rant the added complexity and increase in the
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number of parameters. The harmonic coupling
term is then taken to be simply 1

2
V1

P
hl;mi �

ðYl � YmÞ2, where the notation hl;mi implies that
the sum is restricted to nearest neighbors only.
We now scale displacement by the factor L ¼ffiffiffiffiffiffiffiffiffi
B=C

p
, time by t0 ¼ B2=MC, momentum by ML=t0

and energy by B3=C2. The resulting scaled Ham-
iltonian has the form

H ¼
X
l

1

2
P 2l þ

X
l

VlocðulÞ þ
1

2
k
X
hl;mi

ðul � umÞ2;

ð16Þ

where H is the scaled Hamiltonian and Pl and ul
are the scaled local-mode momenta and ampli-
tudes. VlocðulÞ takes the form

VlocðulÞ ¼
1

2
au2l �

1

4
u4l þ

1

6
u6l ; ð17Þ

where

a ¼ AC
B2

; ð18Þ

and k in Eq. (16) is

k ¼ V1C
B2

: ð19Þ

For definiteness we take V1, and therefore k,
to be positive. H thus depends only on the two
parameters a and k. We take it to be classical.
The local mode amplitudes ul evolve with time

under the influence of H and the coupling to the
reservoir. We presume ul to follow Langevin dy-
namics with the equation of motion

€uul ¼ � oVtot
oul

� 1
s
_uul þ Fl; ð20Þ

where

Vtot ¼
X
m

VlocðumÞ þ
1

2
k
X
hm;ni

ðum � unÞ2 ð21Þ

is the total potential. Fl is a Gaussian random
force exerted by the reservoir with moments

hFlðtÞi ¼ 0; ð22Þ

hFlðtÞFmðt0Þi ¼ Fdlmdðt � t0Þ: ð23Þ

Equipartition requires that

h _uu2l i ¼
1

2
kBT ð24Þ

with T the reservoir temperature. The fluctuation-
dissipation theorem requires that

1

s
¼ F

kBT
: ð25Þ

Thus we are faced with a four-parameter prob-
lem (a; k; s; T ) even with this simplest of models.
Achieving a detailed understanding of the physics
of the model requires extensive numerical simula-
tion. However, many of its important qualitative
features are readily extracted, yielding important
insights into the nature of pressure amorphization
in those materials to which the model might be
relevant, as described in the next four sections. The
results of the simulations will be reported sepa-
rately [29].

5. Pressure amorphization

We now proceed to elucidate the potential en-
ergy landscape of our model. For a > 3=16 and 8k
in Eq. (21), Vtot has a global minimum at ul ¼ 0, 8l,
at which Vtot ¼ 0. We assign this minimum to the
low-pressure crystal structure C described in Sec-
tion 2. When a < 3=16 and 8k, there are two
equivalent global minima with

ul ¼ w ¼ 1

2

"
þ

ffiffiffiffiffiffiffiffiffiffiffi
1

4
� a

r #1=2
8l; ð26Þ

ul ¼ �w ¼ � 1

2

"
þ

ffiffiffiffiffiffiffiffiffiffiffi
1

4
� a

r #1=2
8l; ð27Þ

at which

Vtot ¼
1

3
N
3

4
a

"
� 1
8
� 1

4

�
� a

�3=2#
< 0: ð28Þ

We take this structure to represent the high-
pressure crystal structure C0 of Section 2. Thus,
there is a first-order phase transition at a ¼ 3=16
from C to C0 as a decreases monotonically with
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pressure p irrespective of the value of k. The two
spinodals 2 occur at a ¼ 1=4 and a ¼ 0, 8k. For the
phase transition C $ C0 to be strongly first-order
in the sense used in Section 2, a variation in a from
1/4 to 0 can be thought of as occurring via sub-
stantial change of pressure. The barrier between C
and C0 at the transition (where a ¼ 3=16) is 1/96,
so that the reduced temperature T must be taken
substantially lower than 1/96 for strong hysteresis
to occur, as it does in type I materials.
We first consider the Einstein case in which

k ¼ 0. For 3=16 < a < 1=4, 2N degenerate local
minima exist in Vtot with energy given by Eq. (28),
except that Vtot is positive in this range. The mag-
nitude of ul is given by w in Eq. (26), its sign being
arbitrary. As a falls below 3/16, all 2N phases be-
come equivalently stable relative to C. Among
these 2N phases, two correspond to single-crystal
C0, and an exponentially small fraction to poly- or
micro-crystalline C0; yet the vast majority of the
structures are amorphous in that there is at most
short-range order in the ul even though a clear
topological memory of the original crystal struc-
ture C remains. Barriers keep the system in C until
the spinodal at a ¼ 0 is approached. At the spin-
odal, C becomes locally unstable relative to all 2N

phases. The probability that the system will find its
way from C to one of the amorphous phases is
vastly higher than that to one of the exponentially
fewer polycrystalline C0 phases.
More generally, pressure amorphization occurs

if (i) there is a region of the a–k plane in which the
a phases are more stable than the C phase but
metastable with respect to C0 and (ii) if s and T
are such that a is preferentially accessible from C
either irreversibly (types I, II, and IV) or tempo-
rarily (types III and V). In the next three sections
we shall argue that this indeed holds for the 2-site
case, the 3-site case, and the N-site case by exam-
ining the topology of the potential-energy land-

scape presented by V[u]. In reading these sections,
it is important to bear in mind that k determines
how flat the branch is and a how soft. A soft, flat
branch has small a and small k.
Note that the previous discussion straightfor-

wardly applies to the case in which there are m flat
branches. V[Y] is then defined on a mN -dimen-
sional configuration space. Around every mini-
mum in this space there is a basin of attraction
bounded by a separatrix, a hypersurface of di-
mension mN � 1. As in the single-branch case, PA
will occur when the amorphous minima a are
preferentiably accessible from C.

6. The 2-site model

To begin, we study pressure amorphization in
our simple Hamiltonian through analysis of the
topology and kinetics of a 2-site model. In what
follows the local-mode amplitude and momentum
of the first site are x and Px, those of the second site
y and Py . The Hamiltonian is

H ¼ T þ V ; ð29Þ
where

T ¼ 1
2
ðP 2x þ P 2y Þ ð30Þ

and

V ¼ 1
2
aðx2 þ y2Þ � 1

4
ðx4 þ y4Þ þ 1

6
ðx6 þ y6Þ

þ 1
2
kðx� yÞ2: ð31Þ

In Fig. 1, we show in the xy configuration plane
the critical points of V ðx; yÞ for k ¼ 0 and 0 <
a < 3=16. C occurs at x ¼ y ¼ 0, C0 at x ¼ y ¼ �w.
There is only one saddle point separating the C, C0,
or a basins from each neighboring intermediate i
basin.
In Fig. 2, we divide the a–k phase plane into

regions each of which has a distinct critical point
(CP) structure, labelling each region (with one
exception) by the stable crystal structure within it
and displaying the CP structure. The exception,
shaded, is the region within which V retains at fi-
nite k for 0 < a < 3=16 the same topology, i.e. CP

2 Throughout this paper we use the term spinodal in a

generic sense to designate a locus of local instabilities in a phase

space. In Section 3, it specifically refers to a locus of dynamical

instabilities in the a–k phase plane where a minimum in the

potential energy disappears. In Section 10, we use it to refer to

the locus of local thermodynamic instabilities of a crystalline

phase with respect to a melt.
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structure, that it has for k ¼ 0 as shown in Fig. 1.
It is only within this region that PA is possible
because the a minima exist, they are stable relative
to C, and both a and C0 can be reached from C
only by trajectories which must pass through in-
termediate basins i so that the transition C to a can
compete kinetically with C to C0.
For PA to occur within this 2-site model, tra-

jectories from C to a must be traversed with some
probability relative to those from C to C0. This
happens if the following seven conditions are
met: 3 (i) the minimum must exist and be stable
relative to C; (ii) intermediate basins of attraction
must exist, and all statistically significant trajec-
tories from C to C0 or a must pass through them;
(iii) for hysteresis, both Vic � Vc and Via � Va must
be much larger than kBT at a ¼ 3=16; (iv) for ia to

be accessible from ic, one requires Vic � Via J 0 and
slow relaxation in the i basin; (v) for the proba-
bilities of transitions from i to a and from i to C0 to
be of comparable magnitudes, Via � Vic0 must not
be much larger than kBT ; (vi) for the transition
from i to a to be irreversible, or likewise for there
to be a very long resident time in a before a
transition from a to C0, Via � Va � kBT and fast
relaxation must occur in the basin; (vii) finally, for
consistency of (v) and (vi), s must not be too low.
Detailed qualitative considerations strongly sug-
gest that these conditions can be met only for a
and k in the shaded region of Fig. 2, provided that
the remaining parameters T and s assume appro-
priate values. The actual determination of the
probability of C ! a relative to that for C ! C0

for various values of T and s requires numerical
simulation, the results of which will be reported
elsewhere.
We have supposed that a is a monotonically

decreasing function of pressure. For simplicity, we
shall further suppose that k depends weakly on p
as a decreases. The effect of pressure change on the

Fig. 2. The a–k phase plane of the 2-site model divided into
regions of distinct critical point structure. Maxima are indicated

by open circles, minima by solid circles, and saddle points by

open squares. The sizes of the circles reflect the relative mag-

nitudes of the extrema. Each region is labelled by the stable

crystal structure within it, except for one. Within that region,

marked PA, the critical point structure is the same as for k ¼ 0,
0 < a < 3=16, and pressure amorphization is possible as dis-

cussed in the text.

Fig. 1. Contour plot of the potential V ðx; yÞ of the 2-site model
in the xy plane. Minima are indicated by white circles and

saddle points by open squares; the maxima are clear by in-

spection. The larger the symbol, the lower the value of V ðx; yÞ.
The crystalline minima are indicated by C or C0, the interme-

diate minima by i, and the amorphous minima by a.

3 In the following, single subscripts on V indicate the value of

V at a minimum. Double subscripts indicate its value at a saddle

point lying on the separatrix between the two minima specified

by the subscript.
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system can be represented by a trajectory in the a–
k plane. One can readily see that the five types of
behavior described in Section 2 have direct paral-
lels in the responses of our model system along
different trajectories in the a–k plane. For exam-
ple, a trajectory which starts at a > 1=4 and moves
well into the PA region before reversing and re-
turning corresponds to type I behavior, with pca
corresponding to 0 < aca < 3=16 and pac corre-
sponding to 3=16 < aac < 1=4. Type II corre-
sponds to a trajectory that starts in structure C
at a ¼ a0 with 3=16 < a0 < 1=4, transforms into a
below 0 < aac < 3=16, and can return to a0 while
still being amorphous. Trajectories terminating in
the PA region near its upper right boundary cor-
respond to behavior typical of type III materials.
A trajectory which starts at a > 1=4 and passes
through the PA region into that with a < 0 would
correspond to the situation in a type IV material.
Finally, trajectories which, on their return to larger
a, pass through the upper right boundary can
undergo an a ! C0 transition inside the boundary,
remaining in C0 upon pressure reduction until
some a in (3=16; 1=4) is reached; these would cor-
respond to transitions in type V materials.

7. The 3-site model

We now discuss an extension of the model de-
scribed in Section 6 to three sites. We label the
third site by z and suppose it is coupled only to y
as in a linear triatomic molecule. An additional
term P 2z =2 is added to T in Eq. (30), and V becomes

V ¼ 1
2

aðx2 þ y2 þ z2Þ � 1
4
ðx4 þ y4 þ z4Þ

þ 1
6
ðx6 þ y6 þ z6Þ þ 1

2
k½ðx� yÞ2 þ ðy � zÞ2�:

ð32Þ

Just as in the 2-site model, there is a region in
the a–k plane within which the CP structure and
the topology of V remain the same as for k ¼ 0. It
is within this region that PA can occur. Its shape is
qualitatively the same as that for the 2-site model,
bounded by the a-axis from 0 to 3 /16 and on the
right by a vertical segment at a ¼ 3=16. The upper

boundary segments, however, are displaced to-
wards smaller k.
The k ¼ 0 minima are shown in Fig. 3. For

small but finite k in the PA region, the structure is
compressed perpendicular to the x ¼ y and y ¼ z
planes. There are now six classes of minima: one
C, six i1, six i2, six i02, six a, and two C0, using the
notation of Fig. 3. The sequence of values of V at
the minima is Vc > Vi1 > Vi0

2
> Vi2 > Va > Vc0 . The

sequence at the saddles is Vci > Vi1i02 > Vi1i2 > Vi2a;
Vi0
2
a; Vi0

2
c0 ; and Vci � Vi1i02 � Vi1i02 � Vi1i2 , etc. These

sequences have the following implications. As be-
fore, transitions between the basins occur over
separatrices near the transition states (saddle
points). Relaxation can be fast enough to bias the
transformation down hill but still slow enough
that enough energy remains to get over each suc-
cessive barrier with little difference between rates
over the primed and unprimed barriers. To reach
C0 from C, the system must follow the sequence
C ! i ! i2 ! C0 for which there are 12 indepen-
dent routes. To reach a from C, the system can
follow either of two sequences, C ! i ! i02 ! a or
C ! i ! i2 ! a, for which there are 36 routes, or

Fig. 3. Minima of the potential energy landscape of the 3-site

model.

M.H. Cohen et al. / Journal of Non-Crystalline Solids 307–310 (2002) 602–612 609



three times as many as for C ! C0. This increase in
the number of paths from C to a relative to that
from C to C0 compensates for the more favorable
kinetics of the final step from i2 to C0, increasing
the probability of C ! a relative to that of C ! C0

over that of the two-site model.

8. The N-site model

We now jump to a model with a macroscopi-
cally large number of equivalent sites, each of
which is coupled to a finite number of nearest
neighbors via the harmonic term in V. Once again,
there is a domain in the a–k plane in which the
topology of V is the same for finite k as for k ¼ 0.
Its lower boundary is unchanged at k ¼ 0; 0 <
a < 3=16. Its upper boundary is further com-
pressed, the degree of compression increasing with
the number of nearest neighbors. Just as the min-
ima for the 3-site case lie at the center, face centers,
edge centers, and corners of a cube, so are the
minima arranged on an N-dimensional hypercube
in theN-dimensional configuration space for k ¼ 0.
As k increases, the CP structure distorts without
change of topology up to some k which depends
on a. The existence of this finite domain of topo-
logical stability is guaranteed by the analyticity of
V, its gradient, and its Hessian in the configuration
space. There is now one minimum of type C,
3N � 2N � 1 of type i, 2N � 2 of type a, and 2 of
type C0. The sequence of values of V is Vc > Vi >
Va > Vc0 .

4 The number of a minima is exponen-
tially larger than the number of C0 minima, even if
one extracts the polycrystalline C0 structures from
the above number of as and adds them to the C0s,
as one can see from the following estimate. Let n
be the minimum grain size. Then 2N=n is a lower
bound but still a good estimate of the number of
polycrystalline structures. The corrected ratio of
C0’s to as is thus estimated to be

2�Nð1�1=nÞ

1� 2�Nð1�1=nÞ 

!N!1
0; with n > 1; ð33Þ

which is still exponentially small. The number of
paths from C to a is correspondingly exponentially
larger than that from C to C0, overcoming any
kinetic advantage of any single path from C to C0.
In conclusion, the key to PA within this model is
the existence of a region of the a–k plane within
which the k ¼ 0 topology persists, a region of flat
(small k) and soft but not unstable (0 < a < 3=16)
branches together with s and T in a suitable range.

9. Relation to conventional nucleation and growth

mechanism

Suppose the transformation C ! C0 were to
occur by the conventional nucleation and growth
mechanism with _II the nucleation rate and _RR the
growth rate [30]. For _II= _RR finite, a polycrystal of C0

results. In the limit _II= _RR ! 0, a single crystal results.
In the limit _II= _RR ! 1, a nanocrystalline material
results, and we can imagine that in the ultimate
limit in which nucleation totally dominates growth,
an amorphous phase results when the crystallite is
so small that there is no distinction between bulk
and grain boundary. In the classical theory of nu-
cleation, the critical radius of the nucleus of C0 is

R� ¼ 2r
Dg

: ð34Þ

Here Dg is the bulk Gibbs free-energy density
difference between C and C0, and r is the interfa-
cial free energy. The corresponding barrier to nu-
cleation is

DG� ¼ 16p
3

r3

ðDgÞ2
: ð35Þ

For nucleation completely to dominate growth
and for the critical size nucleus to be so small that
the result is an amorphous phase, it is obvious from
Eqs. (34) and (35) that r must become small. r
measures the free-energy cost of a rapid local
structural change from C to C0. In our simple
model, the energy cost of such a structural change
is simply proportional to the coupling constant k.
Thus, our finding the possibility of pressure amor-
phization in the region of the a–k plane within
which the k ¼ 0 topology of V is preserved is
completely consistent with nucleation theory, the4 Both Vi and Va have a range OðNÞ.
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smallness of k corresponding to small r and the
existence of intermediate minima corresponding to
finite Dg and slow growth rate. To conclude, PA
occurs when nucleation totally dominates growth.

10. Summary and conclusions

In this work, we make a clear distinction be-
tween two types of amorphous phases. The first,
the conventional glassy phase, is not topologically
equivalent to any crystalline phase, and glass for-
mation from the crystal is a reconstructive trans-
formation [31]. Such glasses are formed, for
example, by sufficiently rapid cooling from the
melt. A conventional glass can form via pressure
amorphization if (i) the limit of local stability of C
relative to its melt (the spinodal 2) is approached,
and (ii) if the glass transition temperature of the
melt is then higher than the equilibrium melting
temperature of C [3,4]. Here we are concerned
not with conventional glasses, but with pressure-
induced amorphous phases in which the structural
instability that leads to the amorphization is as-
sociated with one or more soft, flat branches of
the phonon spectrum and in which memory of
the original topology of the low-pressure crystal
structure is retained through the remaining stable
branches. In such cases, the amorphization arises
from a random displacive or orientational transi-
tion instead of from a reconstructive transition.
This type of pressure amorphization is driven

by an underlying strongly first-order structural
phase transition C ! C0 under compression. In
our view, as C becomes thermodynamically un-
stable relative to C0, there is one or more branches
which flatten with increasing pressure. Local modes
in the form of lattice Wannier functions provide a
natural means of description of such flat branches.
We have supposed that the nonlinearities associ-
ated with the first-order phase transition arise
primarily in the amplitudes of the individual local
modes, an inessential simplification. We have ar-
gued that there is a range of pressures within which
the local nonlinearities and relative flatness of the
relevant branch or branches allow an exponen-
tially large number of amorphous structures to be
metastable and preferentially kinetically accessible

over C relative to the thermodynamically stable
single crystal or poly-crystalline C0 phase. Such
metastability and kinetic preference occur within a
restricted region of the parameter space defining
the potential energy landscape in the configuration
space of the local modes, as shown explicitly for
the 2-site model in Fig. 2. The ambient tempera-
ture must be low enough to lead to substantial
hysteresis (T � 1=96), so that C persists well into
its domain of metastability as p increases. Once the
structural transition is initiated, it proceeds down-
hill via an exponentially large number of paths
through the basins of attraction of intermediate
structures without being trapped there, requiring
relaxation rates in a suitable range. If trapping were
to occur, it would correspond to intermixed
amorphous a, intermediate, and crystalline C re-
gions, resulting in observable Bragg peaks associ-
ated with C. Further compression (i.e., further
reduction of a) would result in a drop in the frac-
tion of C, decreasing Bragg peak intensities. That
is, trapping implies a broadened C to a transition.
The intermediate basins correspond to a random
admixture of both C-like and C0-like local config-
urations.
Normally, first-order structural transitions are

discussed in terms of nucleation and growth. In
the present picture, the critical size nucleus is not
much more than a single unit cell (with minor
displacements in neighboring cells) and nucleation
overwhelms growth, leaving the system in an amor-
phous structure when nucleation is complete.
The type of pattern observed in the structural

transitions caused by pressure changes depends on
the particular trajectory through the parameter
space of the potential which is induced by the
changing pressure.
The picture developed in this paper can em-

brace all of the phenomena which have been ob-
served in association with pressure amorphization.
Nevertheless, the discussion has been largely qual-
itative. Obtaining a quantitative demonstration
that these simple models admit pressure amorph-
ization requires numerical simulation [29]. Once
that has been demonstrated, such simulations
should be carried out for real materials since sub-
stantial experience has already been built up in
constructing effective Hamiltonians of the type
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considered here for specific substances [26–28].
Among the tasks for simulations is to distinguish
whether the occurrence of pressure amorphization
results in a conventional glass or leaves the crys-
talline topology invariant for a particular material.
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