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PACS. 62.20.Dc – Elasticity, elastic constants.
PACS. 64.60.-i – General studies of phase transitions.

Abstract. – It is shown that the internal pressure may be represented as the driving force
for the proper ferroelastic phase transitions induced by cation exchange. It has been found
that the internal stress tensor, generated by the cation exchange, is of a more complicated
nature than the tensor of the external stress. This difference comes from a specific coupling
of the substituting cations with local, microscopic displacements of the neighbouring atoms
inside the unit cell. It becomes evident why in a number of experiments a significant difference
in the action of internal and external pressures on the crystal structure is observed and, also,
why the internal pressure causes a greater anisotropy than the external one. An equation has
been obtained, with the help of which it appears possible to predict the internal pressure of
the proper monoclinic-triclinic ferroelastic phase transition induced by cation exchange if the
initial effective elastic moduli are known.

Ferroelastics are practised widely in acousto-optic and acoustoelectric devices. In addi-
tion, the basic features of ferroelastics, such as mechanical twinning, is observed in the high-
temperature superconductors. Nevertheless, there is still some vagueness in the nature of the
ferroelastic phase transitions (FPTs). In the previous work [1], using the “ball-and-perfect
springs” model, we have determined the mechanism of occurrence of a soft mode at a proper
FPT in Sr-anorthite ((Sr,Ca)Al2Si2O8) and some other crystals under the external pressure.
In the present paper, we consider the proper monoclinic-triclinic FPT in Sr-anorthite induced
by Ca and Sr cation exchange rather than by the external pressure. In other words, the same
approach is used for the case of the internal (chemical) pressure. Owing to the fact that the
Ca2+ radius is smaller than the Sr2+ ionic radius, the effective radius of the A-site decreases
with increasing Ca content, thus enhancing the internal strain in the crystal. We believe that
this “chemical” tension of the interatomic bonds is most convenient to use as thermodynamic
parameter of the Gibbs potential instead of a usual cation content, because a correct physical
description of the FPT requires a consideration of both the atomic displacements and the forces
which cause them. We will try to show the validity of introduction of the internal (chemical)
pressure into the Gibbs potential as the driving force for the proper FPT, because the internal
pressure is interpreted by many scientists as an imaginary, unreal and unobservable value.

Based on papers [2–9], which dealt with the internal pressure in crystals, it follows that
the internal pressure is a real value which is capable of going into action differently from the
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external pressure. For example, in ref. [2] the authors conclude that the “chemical” pres-
sure is a more complicated parameter than the mechanical one. Various types of “chemical”
pressure can lead to the Pbnm-R3c phase transition in manganites with different signs of cell
volume change. In ref. [3], the authors find an unexpected minimum of Mn-O bond lengths
in manganites as a function of cation radius and connect it with the reversal of sign of the
internal pressure. This reversal of sign of the internal pressure could, in fact, be a common
effect in perovskites, which deserves to be explored in other materials as well. They advocate
that application of the external pressure on these compounds produces quite different struc-
tural effects than the “internal” pressure. In ref. [4], the authors believe the application of
the mechanical pressure to copper-oxide superconductors to induce an increase in the Curie
temperature Tc. If the mechanical pressure is replaced by a chemical one, the effect becomes
negative and a decrease of Tc is observed. In addition, it was observed that the chemical
pressure anisotropy is greater than the mechanical one. To sum up, we can say that, first, the
experiments show that the internal pressure —being a more complicated parameter as com-
pared to the external one— brings about a greater anisotropy. And, second, at the present
time, the cause of the fact that the internal and the external pressures in anisotropic materials
are not similar parameters is poorly understood.

Let us discuss how to describe the difference of the action of the external Pext and the inter-
nal Pint pressures on the crystal structure and why the internal pressure is a more complicated
parameter, bringing about a greater anisotropy. Let us dwell on the crystal compressed by
the hydrostatic pressure Pext. A complete description of a geometrical structure of a lattice is
given by 6 independent parameters determining a primitive cell (three lengths of the transla-
tion vectors and three corners between them) and by 3n coordinates of atoms in a cell (n is the
number of atoms in a primitive cell). The basis of the internal deformations is determined by a
set of atomic Cartesian displacements x, identical in all primitive cells, i.e. by the shifts of the
absolutely rigid Brave sublattices. It is clear that from 3n internal deformations only (3n−3)
are linear-independent deformations, and 3 correspond to translations of a crystal as a whole.
The external deformations are determined by the 6-dimensional basis, which is given by the
deformation tensor of the second rank Eij , with diagonal elements describing relative changes
of the linear sizes of a crystal along the Cartesian axes, and non-diagonal elements describing
the shift deformations [10]. The absolute Cartesian coordinates of the atomic displacement
X are clearly related to the deformation tensor of a primitive cell E and to the change of the
atomic coordinate x inside the primitive cell relative to the chosen centre of masses with the
coordinates R by the following correlation: X = x+ER. The change of density of the Gibbs
free energy as a function of x and E is written down in quadratic approximation as

G(x,E) = −fxx − fEE + xFxxx/2 + xFxEE + EFEEE/2, (1)

where we use the tensor notation for the derivatives fx = −∂G/∂x, fE = −∂G/∂E, Fxx =
∂2G/∂x∂x, FxE = ∂2G/∂x∂E, FEE = ∂2G/∂E∂E, initially taken at x = 0, E = 0.

In equilibrium a crystal should satisfy the following conditions: 1) the internal resulting
forces on any atom be equal to fx = 0; 2) the external forces acting on a unit cell are
fE = (σext)ij = −Pextδij , because the hydrostatic pressure corresponds to the diagonal stress
tensor, which has equal components σ11 = σ22 = σ33 = Pext for isotropic crystals; 3) in
equilibrium, the Gibbs potential has a minimum relative to the internal atomic displacements
x and the deformations E: Fxxx + FxEE = 0, FxEx + FEEE + Pextδij = 0. Taking
into account these equilibrium conditions, the Gibbs potential can be reduced to the form:
G(E) = PextV + ECE/2, where F = ECE/2 is a free energy in quadratic approximation,
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V ≈ E11+E22+E33 is a relative change of the volume of a unit cell and the matrix of elastic
constants C is determined as

C = FEE − FxEF−1
xx FxE . (2)

It is seen that these elastic moduli are of a complex origin (see also refs. [11] and [12]), because
the first term on the right-hand side of eq. (2) is a contribution of the external deformations,
and the second term is a contribution of the internal deformations. It is evident from this
equation that just the second term, which is connected with the optical-acoustic coupling FxE ,
determines the ferroelastic instability.

Now, we can consider the origin of the internal pressure in the process of the cation
exchange. In this case, the introduction of the new ions generally produces an overall cell de-
formation E as well as a change in local atoms coordinates x. Two tensors correspond to these
two kinds of the deformations: σdir (direct) —the mechanical stress tensor, directly affecting
the lattice parameters due to the change in radii of nodal atoms in the lattice in the process
of the cation exchange, and σind (indirect) —the mechanical stress tensor, indirectly affecting
the lattice parameters due to the change in radii of non-nodal atoms inside a unit cell. Thus,
the complete tensor of the internal stress is equal to σint = σdir+σind. In this case, the forces,
responsible for the direct coupling with lattice parameters, are fE = (σdir)ij = −Pdirδij and,
also, the internal resulting forces on atoms, responsible for the indirect coupling with lattice
parameters, are fx = −∂G/∂x. We emphasize that fx �= 0 only when these forces act on the
atoms at sites lacking inversion symmetry [12]. In equilibrium, the Gibbs potential has a mini-
mum relative to the internal atomic displacements x and the deformations E: Fxxx+FxEE−
fx = 0, FxEx + FEEE − σdir = 0. The solution to this system of equations is the following:

x = F−1
xx (1 + FxEC−1FxEF−1

xx )fx − F−1
xx FxEC−1σdir,

E = −C−1FxEF−1
xx fx + C−1σdir = C−1(σind + σdir) = C−1σint, (3)

where σind = −FxEF−1
xx fx and C is determined by eq. (2).

It is clear that the tensor σint, generated by the cation exchange, is of a more complicated
nature than the tensor of the external stress, because not only a term which is similar to the
external pressure, but also the anisotropic term σind is present. This difference comes from
a specific coupling of the substituting cations with local, microscopic displacements of the
neighbouring atoms inside the unit cell. Thus, the macroscopic strain is partly a secondary
effect of the cations exchange, whereas it is a primary effect of an external stress. In the first
approximation, this internal stress can be expressed in terms of the isotropic internal pres-
sure (σint)ij ≈ −Pintδij . It is seen from eq. (3) that the term σind is anisotropic, therefore its
approximation by the internal pressure is rough and it is appropriate only for the isotropic crys-
tals. Also, this approximation is possible due to the presence of spherically symmetrical cations
in the cation exchange making all relevant forces spherically symmetrical or isotropic (assum-
ing a disordered cation arrangement). Spontaneous strain, caused by internal isotropic pres-
sure, can be anisotropic because of the anisotropy of elastic constants. Now it is possible to give
the following definition of the internal pressure: “internal pressure due to the concentration
N of new ions is equal to such an external pressure which at the presence of additional forces
on atoms fx would result in the same macroscopic deformation as does the concentration N”.

We believe that the internal pressure can be experimentally measured. In refs. [13] and [14],
the authors declare that Cr3+ containing crystals have been extensively used to measure
temperature and pressure, since Cr3+ ions exhibit the strong luminescent lines of R1 and
R2. The origin of the R fluorescence line is a radiative decay of excited d3 electrons of
substitutional Cr3+ ions. The ions are in the octahedral coordination with the oxygen ions
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in the corundum structure. When the octahedral arrangement is strained, the crystal field
at Cr ions alters, and consequently the frequency of R lines changes. This is the basis for
high-pressure measurements in diamond-anvil cells and for the measurement of stresses in
ceramics and composites [15]. We expect that if we manage to introduce Cr-ions into the
solid solutions with different content of substituting cations, then we will be able to measure
the value of the internal pressure due to the cation exchange by the shifts of the luminescent
lines R1 and R2 in the spectra of each sample.

Hereinafter we are going to study the Gibbs potential for Sr-anorthite, using, for simplicity,
the internal pressure approximation: G(E) = PintV + ECE/2. In the previous paper [1],
using the “ball-and-perfect springs” model, we have determined the mechanism of occurrence
of the soft mode in Sr-anorthite and some other crystals at proper FPT, applying the external
pressure. The same approach is used for the case of the internal pressure. This approach differs
from the conventional one in that the cause of mechanical instability of a crystal is associated
with first-order terms, due to microscopic tensions of bonds in the lattice rather than with
the presence of terms, exceeding second order. In this case, only “kinematic” anharmonicity,
described for the optical modes in ref. [16] and for the acoustic modes in ref. [1], can occur.

The linear Lagrangian strain tensor of the form eij = (1/2)(∂ui/∂x0j + ∂uj/∂x0i) is
commonly used to describe the FPT. As in the process of the phase transition, spontaneous
deformation increases, it may appear that the non-linear terms should be taken into account
in the strain tensor. This tensor is called finite and is defined as Eij = (1/2)[(∂ui/∂x0j +
∂uj/∂x0i)+

∑
k(∂uk/∂x0i)(∂uk/∂x0j)], where the vector u = x−x0 determines displacements

of a point, located at x0 prior to deformation and at x after the deformation. The indices i, j,
k correspond to the Cartesian coordinates, each of them running 1, 2, 3. We have found out
that the components of the finite-strain tensor and the commonly used linear strain tensor
are greatly distinguished for anorthite. Hence, to minimize the calculation error of the FPT,
the finite-strain tensor has to be applied.

For the completeness of the system of equations, it is also necessary to describe the depen-
dence of the internal pressure on some thermodynamic parameters. In the first approximation,
this pressure can be considered as a linear function of the cation content. Then the system of
equations for the FPT will take the form

∂G(Em, Pint)/∂Em = 0,
Pint = αN, (4)

where G(Em, Pint) is the Gibbs potential, m = 1, 2, . . ., 6, α is a linear coefficient, N is a
molar fraction of the substituting cations.

Now let us choose the terms of the free-energy expansion so that they give the best fit to the
experimental data [17]. Since the component E4 of the finite tensor is maximum and breaks
the symmetry of a monoclinic crystal, we take the expansion of a part of the free energy in the
parameter E4 up to the term E64 : F4 = A4E

2
4/2+B4E

4
4/4+C4E

6
4/6, where all the coefficients

are constants. Let us emphasize that we do not state the vanishing of the coefficient A4 at
the critical value of a thermodynamic parameter as was done in the Landau phenomenological
theory. The component E6 of the finite-strain tensor also breaks the symmetry, but it is much
smaller than E4 in the phase transition area, so we take the expansion of a part of the free
energy in the parameter E6 up to the term E46 : F6 = A6E

2
6/2+B6E

4
6/4, where the coefficients

A6 and B6 are constants, independent of the Ca-Sr cation composition. It turned out that
it was necessary to introduce supplementary terms E44 , E

6
4 and E46 into the elastic energy to

better approximate the experimental data from ref. [17]. It should be underlined that these
terms are correction ones, not affecting the occurrence of a soft mode. In order that the
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main regularities of the FPT in the analytical form be simplified, we have taken only one
bilinear term, dropping the biquadratic and linear cubic terms when describing the coupling
of the parameters E4 and E6 with the same symmetry: Fasym = A4–6E4E6. The coupling of
the non-symmetry-breaking strain components is expressed by an ordinary quadratic elastic
strain: Fsym =

∑
ij AijEiEj/2, with indices i, j = 1, 2, 3, 5.

In ref. [1] we have shown that the soft acoustic mode, causing the proper monoclinic-
triclinic FPT in anorthite, is mainly due to the “kinematic” anharmonicity, which is ex-
pressed by the linear-quadratic coupling of the static non-symmetry-breaking and the dy-
namic symmetry-breaking strain components. Here we use the same approach, but in this
case the static non-symmetry-breaking strain components are caused by the internal pres-
sure instead of the external one. Therefore, to take into account the coupling of the non-
symmetry-breaking as well as the symmetry-breaking strain components, we made use only
of the linear-quadratic terms: Finter = (

∑
j D4jEj)E24/2 + (

∑
j D6jEj)E26/2, with indices

j = 1, 2, 3, 5. For the soft acoustic mode with the propagation direction along the crystallo-
graphic Y -axis, Finter =

∑
j C2jEj(E24 +E

2
6)/2. Now the total free energy is written down as

F = F4 + F6 + Fsym + Fasym + Finter.
When solving the system of equations (4), the dependences of the spontaneous strain

tensor components on the value of the internal pressure are determined when the Ca content
increases. Four non-symmetry-breaking strain components are linearly dependent on the
internal pressure:

Ej = kjPint, (5)

with indices j = 1, 2, 3, 5. Here the coefficients kj are the linear compressibility of a crystal
along the Cartesian axes, which can be determined by the elements of the compliance matrix
S = C−1 as follows: kj =

∑
m Sjm. Substituting Ej in the above-mentioned terms of the

linear-quadratic coupling yields the coefficients of the quadratic terms E24/2 and E26/2 in
the free-energy expansions equal to A4 +

∑
j D4jSjPint and A6 +

∑
j D6jSjPint. It is clear

that these coefficients fall to zero at partial critical pressures Pc1 = −A4/
∑

j D4jSj and
Pc2 = −A6/

∑
j D6jSj . The symmetry-breaking strain components E4 and E6 are zero at the

monoclinic phase at Pint < Pc, where Pc is the experimental pressure of the phase transition.
At the triclinic phase, at Pint ≥ Pc, to a first approximation, the analytical expressions for E4
and E6 in the phase transition are the following:

E4 ∼= −
{
−B4/2C4 +

[
(B4/C4)2/4− L

]1/2}1/2
,

E6 ∼=
[
−Q+

(
Q2 + S3

)1/2]1/3 +
[
−Q− (

Q2 + S3
)1/2]1/3

, (6)

where S = (A6 − Pint)/3B6, Q = A4–6E4/2B6, L = [(A4 − Pint)(A6 − Pint)−A24–6]/C4(A6 −
Pint). A real non-zero solution is possible at L ≤ 0. The phase transition pressure at L = 0 is

Pc = (A4 +A6)/2−
[
(A4 +A6)2/4−A4A6 +A24–6

]1/2
. (7)

Here, the critical phase transition pressure is different from the partial critical pressures Pc1
and Pc2 due to the coupling of the components E4 and E6. Now the elastic constants C44, C46
and C66 can be obtained in the usual way: C44 = ∂2G/∂E24 = A4−Pint, C46 = ∂2G/∂E4E6 =
A4–6 and C66 = ∂2G/∂E26 = A6 − Pint. It is seen that Pc is the solution to the equation
C44C66−C246 = 0. As is shown in ref. [18], the monoclinic-triclinic phase transition in feldspars
is driven by the instability associated with the same combination of elastic constants, which
confirms the validity of our model.
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Fig. 1 – Comparison of model (solid lines) and experimental (triangles) dependences of the strain
components tensors from ref. [17] on the internal pressure and the molar content of Ca. Here the
internal pressure is measured from Sr-phase of the crystal, where Pint = 0.

For the experimental data Ej (j = 1, 2, 3, 5) presented in fig. 1, we substituted the content
of Ca cations along the abscissa for the internal pressure in the following manner. In our
model, we describe the behaviour of the crystal structure with the help of the average internal
pressure for the three directions along the Cartesian axes Pint = 1/3(Pint1 + Pint2 + Pint3).
We equated the theory to the experiment in the extreme right points along the abscissa with
the help of the following formula: Pint =

∑
j CijEj , where j = 1, 2, 3, 5, and i = 1, 2, 3.

The values of the non-symmetry-breaking strain components Ej were taken from fig. 1 for
Ca-anorthite, i.e., for N = 1, and the values of the elastic moduli for these points were
borrowed from ref. [19]. It has been estimated that the internal pressure obtained for x = 1
in CaxSr1−xAl2Si2O8 solid solution is equivalent to the mechanical pressure of about 4GPa.
Hence, from the formula Pint = αN , it follows that α ∼= 4GPa. In this case, it is not difficult
to calculate Pint for any N .

It is interesting to note that the values of the internal and the external pressures, at which
the FPT occurs, differ by almost one order of magnitude. According to our model from eq. (7),
Pc ∼= 0.43GPa, and the external pressure for this transition is 3.2GPa [20]. This difference can
be conditioned by several reasons. The first reason is that it can be caused by the fact that the
external pressure changes the elastic moduli as a result of anharmonicity of the interatomic
potentials, while the internal pressure contains the term FxEF−1

xx fx which acts directly on
the chemical bonds and, consequently, changes the elastic constants more effectively. Second,
as we have mentioned above, the term σind is anisotropic, therefore its approximation by the
internal pressure is rough and it is appropriate only for the isotropic crystals. Third, the
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internal forces fx can change the phase transition pressure owing to interaction of the optical
and the acoustic modes FxE .

To conclude, it should be noted that we have obtained an equation, with the help of
which it appears possible to predict the internal pressure of the proper monoclinic-triclinic
ferroelastic phase transition if the initial effective elastic moduli are known. It is shown that
the internal pressure may be represented as a driving force for the proper ferroelastic phase
transitions induced by the cation exchange. It has been found that the internal stress tensor,
generated by the cation exchange, is of a more complicated nature than the tensor of the
external stress. This difference comes from a specific coupling of the substituting cations
with local, microscopic displacements of the neighbouring atoms inside the unit cell. Thus,
it becomes evident why in a number of experiments a significant difference in the action of
the internal and the external pressures on the crystal structure is observed and, also, why the
internal pressure causes a greater anisotropy than the external one.
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