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Mechanism of occurrence of soft mode at proper ferroelastic phase transitions
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It is shown that softening the acoustic mode, which brings about the occurrence of the proper ferroelastic
phase transition in some crystals, is substantially due to the “kinematic” anharmonicity. The latter arises at the
transition from the natural curvilinear coordinates of interatomic separation to the Cartesian atomic displace-
ments. The equation for such crystals has been obtained, with whose help it appears possible to predict the
pressure of the phase transtion to a triclinic phase if the initial elastic moduli are known.
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Currently a number of molecular-dynamics simulationsthe terms of third and fourth orders when expanding the free
and lattice-dynamics calculations of the soft modes, causingnergy in the non-symmetry-breaking strain components. In
ferroelastic phase transitiofEPT's) in crystals, have been contrast to the present work, the above-mentioned compo-
made®? The analytical equations describing the mechanisrments do not cause changes in the crystal symmetry but give
of occurrence of the soft mode are absent in these simulaise to the formation of modulated-strain structures. Cofvley
tions. It is believed that the symmetry-breaking strain arisesises the terms of second and fourth orders in expansion of
spontaneously without any force being applied, occurring ashe free energy, but does not consider the linear-quadratic
a result of criticality in the elastic moduli. When studying the coupling between the static strains and acoustic waves which
FPT according to the Landau theory, the free-energy expaform a part of the cubic anharmonicity. Anderson and
sion in terms of the critical parameter, breaking the crystaBjount’ have considered the cubic term in the free-energy
symmetry, is done. Thereafter it is postulated that the Coeﬁiexpansion in terms of the symmetry-breaking strain compo-
cient of t.h.e guadratic term of such an gxpansion falls to ZerQents, which are equal to zero in the symmetric phase for a
at the crmcal value of the e_xternal variable parameter. Thu%ondegenerate order parameter. And in our work, the cubic
within this phenomenological approach the mechanism erm, i.e., the linear-quadratic coupling between the param-

causing the occurrence of the soft mode, remains unclear. &ers of different symmetry, results in softening the acoustic

understand this mechanism it is necessary to use a mlcr?ﬁode even in the symmetric phase. Thus this term, as op-

scopic model, which is developed in the present work. As an osed to the above-mentioned work. is not equal to zero in
example, which illustrates this model, we consider the prope i ' q
he symmetric phase.

monoclinic-triclinic FPT in Sr-anorthit¢(Sr,Ca)AbSi,Og].

We have selected this compound because there is a compl te!t should ‘be recalled that, generally, non-symmetry-
set of experimental data for it, namely, the experimental val- reaking and symmetry-bre_aklng order pa_lrameters are repre-
ues of elastic constants, the experimental value of pressurc@nted as the sum of static and dyf?am'c PERS= Qistat

for this transition, and the type of symmetry at transition. We - Qidyn- The static symmetry-breaklng orde_r para}r_ne_ters
consider the proper FPT, because the coupling mechanism Qistar describe a system In the th_ermodynamlc equilibrium
the edge and the angle deformations of a unit cell appea@d they are equal to zero in the high-symmetry phase. In the
more evident. This is due to the fact that we can considefonsidered case, the dynamic symmetry-breaking order pa-
deformation of the entire unit cell, omitting displacements of @MetersQiay, are caused by the acoustic lattice vibrations
individual atoms, as this takes place with improper phasdVith the wave numbeq and the frequency»(q) and they
transition with participation of microparameters. In this work &€ present both in the high-symmetry and the low-symmetry
we try to clarify the most general reason for elastic instabilityPhases. As the phase transition point is approached, the
of a crystal in the symmetric phase at the proper FPT. On th@coustic vibrations with the wave numbey and the fre-
basis of the analysis made, using the “ball-and-perfecflUe€ncy »;(q,) become softer. For the monoclinic-triclinic
springs” modeP we come to a conclusion that the basic transition in anorthites, the change in the point group is
mechanism causing the proper FPT in some crystals is th&/m=1, for which the active representationBg . The sta-
"kinematic” anharmonicity. It is shown that even in the ex- bility condition with respect to this transition is given by the
pression for the free energy, when only the terms containingigenvalueB, of the symmetry-adapted dynamic matrix and
linear elastic moduli are taken into account, it is possible tds of the form: €44Ces— cﬁe)>0. The dynamic matrix yields
obtain anharmonic terms by conserving the quadratic termthe soft acoustic mode with the propagation direction along
in the expression of the strains as functions of the spacthe Y axis and with the polarizatiop— c,4/Cgg 0, 1].2 The
derivatives of the displacements. The above anharmoniorigin of anharmonicity and destabilization of a crystal is
terms are expressed by linear-quadratic coupling between thdisguised in the dynamic matrix, as it is the product of the
non-symmetry-breaking strain components and theelastic-constant matrix and the kinematic coefficients matrix,
symmetry-breaking strain components. So far the softeningvhich are responsible for the behavior of normal modes of a
of the acoustic mode at the proper FPT at the expense of thigystal. As each of these matrices can serve as a source of
coupling has not been described. For example, Pédgses  anharmonicity, let us first consider the anharmonicity con-
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FIG. 1. Schematic illustration of phase transitions under the effect of the hydrostatic presmudehe transverse optical wagtee soft
optical mode for the triatomic T-O-T molecule and the transverse acoustic wthe soft acoustic moddor a monoclinic unit-cell(a)
before andb) after phase transition.

nected only with elastic-constant matrix. This “proper” an- tion, the volume of an elementary cell does not vary for the
harmonicity generally leads to an increase in elastic coneptical modes at vibrations and under pressure, while it var-
stants with pressure and, consequently, to a decrease in thes for the longitudinal- acoustic modes, which can result in
amplitude of the symmetry-breaking transverse acoustic visupplementary anharmonicity. Examination of the coupling
brations. Hence the proper anharmonicity brings about abetween the acoustic modes is more complicated, since they
increase in the structure stability, and this cannot be relatedccur from changes in the deformation tensor, while the op-
to the appearance of instability. tical modes, occurring from changes in the relative coordi-
Let us now consider the anharmonicity connected onlynates of atoms, are the vector vibrations. So, by analogy with
with the kinematic coefficients matrix. We assume and fur-the triatomic molecule, let us trace the occurrence of the
ther this will be shown that the kinematic coefficients matrix,transverse unstable forces which cause the monoclinic-
expressing the transition from the natural curvilingaroor-  triclinic FPT. We expect that when the hydrostatic pressure is
dinates of interatomic separation to the Cartesian atomic disapplied to an elementary cell, the symmetry-breaking desta-
placements can result in the induced linear-quadratic coubilizing forces also occur due to the effect of stressed inter-
pling between the normal modes of different symmetry. Letatomic bonds. Let us consider a monoclinic unit cell with a
us illustrate this “kinematic” mechanism of occurrence of plane of symmetry with the normal oriented along ¥haxis
the anharmonicity resulting in the softening of the optical(see Fig. 1 Let us take the quadratic expansion of the free
vibrations at the improper phase transition in the triatomicdeformation energy of this cell in the natural curvilinegr
molecule T-O-T. In Fig. 1, the solid lines correspond to thecoordinates i, ¢,):
static states of atoms in the thermodynamic equilibrium; the
dashed lines correspond to the transverse optical vibrations
of the O atom. If a molecule is contracted, the forégs
(bond tensionswill arise. The sum of these forces gives the
transverse forc&,; which causes the linear-bend phase tran-
sition [see Fig. )], whenF,>F_,, whereF, is a restoring
force, which is determined by the stiffness of the T-O-T
angle. When verifying the model, the authbisund out that  where i,j=1, 2, 3;k, 1=4, 5, 6;¢{, ¢, are the initial
in some crystals the kinematic anharmonicity completely deelastic moduli for a high-symmetry phagg; are the lattice
scribes soft optical modes at the improper phase transitiomparameters prior to deformation. Note that we consider the
When analyzing the monoclinic-triclinic FPT we use similar quadratic expansion of the free energy in Ef, assuming
reasonings for the soft acoustic modes, which have a numbéhe contribution of the next cubic term of expansion to be
of essential differences from the optical modes. First, thensignificant, i.e., we use the "perfect springs” model and
frequency of the optical vibrations poorly depends on a wavdience the anharmonicity connected with a change of the
vector, and the frequency of acoustic modes linearly dependslastic constants of interatomic bonds is not taken into ac-
on a wave vector and approaches zerdkatO, therefore count. For simplicity, we consider the two-dimensional dis-
dynamic matrices for these vibrations should differ. In addi-tortion of the sidebgc, of the unit cell. This distortion in-
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+%: CE|A<P|<A€D|/2+% CR(Arilro)Agy, (1)
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cludes the compression strains of the edggs,, and the with the pressure increase, is to be introduced into(Eqto
shear straina. It is seen from Fig. (b) that Aa=Az/b,, obtain a more accurate quantitative estimation. As the edge
where by is a lattice parameter along thé axis prior to by declines in theX andZ directions under the effect of the
deformation. Now the quadratic expansion of free energy ifcoustic wave, the expansiakb will have the following

written down as form:
F=c3,(Ab/bg)?/2+ S5 Ab/by) (Ac/cy)/2 Ablby=Ay/by+ (AX)%/2bZ+ (AZ)?/2b2
+ ¢34 Aclcg)?/2+c§,(Azibg)?/2. ) =e,+e3/2+el2. 8

Now let us present this energy in terms of the Cartesiamis the tensor componengs andeg interact, a combination
atomic displacements. As far as the eligedeviates in theZz  of the modulic44Ces— cﬁe tends to zero faster than a separate
direction under the effect of the acoustic wave, the expansiomodulusc,,. In this case, after substitution of expansi@n
of the Ab may be written as into the Gibbs potential, we obtaircCes— 5= (Co4
B ) o1 ) — Pex) (Cos— Pexd) — C22=0 at the transition point. Hence
Ab=[(bg+Ay)%+(AZ)2]Y2—by=Ay+ (Az)2/2by.

3 Pe=(Cast Coe)/2— [ (Ca4t o) 214~ CauCest Cogl % (9)
It is seen that\b involves both the linear components along . 0 0 0
the Y axis and the quadratic components along the perpen- USINg the data c4=11.5 GPagee=24.6 GPag,=
dicular Z axis. That is just a result of the action of the kine- ~12-9 GPa, for the initial moduli of Sr-anorthite from Ref.
matic matrix and nonlinear transformation from the natgral 1> We havep.=3.6 GPa, and the experimental pressure
coordinates to the Cartesian coordinates. Physically, thifom Ref. 10 for this transition is (3:20.4) GPa. When
means that the linear strains in the curvilinepspace of deriving Eq.(9) we used the perfect springs model, when
interatomic separation would provide nonlinear strains in thénly the kinematic anharmonicity can arise as result of the

rectangulax space, in which atomic displacements are condransition from the natural curvilinear atomigcoordinates
sidered. As a result, we obtain that the expansion in(Bg. (interatomic bonds and angles between thémthe Carte-
may be written down aAb/b0=e2+e§/2 as in the mono- Sian coordinates of the atomic displacements. Therefore the

clinic cell Ag,=Aa=—e,. As a result, we obtain the fol- coincidence betwe_en E(B_) and experiment has appeared to
lowing expression for the Gibbs energy be gnexpected, since Fh|s means that predominantly kine-
matic anharmonicity brings about a decrease of the sound
G=F + PexV=03,62/2+ cOse,05+ C 26212 velocity with pressure, when all other anharmonicities are
neglected, i.e., thus leading to instability of the anorthite
+(COeo+ Coses+ Cl) €2+ Pexi(€2tes). (4 crystal Iattlii:e. It turned out that blezrlinite AIRM,
From this equation it follows that the static nhon-symmetry- a all i[ A(lgiggz,@got]l?;.tgl-b%%cp;; 2(2;P(;;3 ?I)? ef.ar:g nbaet[](gﬁ

breakmg strain componen€ss;a andegsa enter the Ilnear— like anorthite at transition from different symmetry phases to
quadratic coupling with the symmetry-breaking strain com-

. he triclinic one. The experimental pressures of the transi-
ponente,qyn, causing the change of the force constants o

L . ions, shown in the brackets, approximately coincide with the
transverse vibrations. Hence the elastic modulus for the dep'ressures obtained from E¢9). The above-indicated crys-
formation, which breaks the crystal symmetry so tiat X

£ 90° b itten d tals as well as anorthite have the elastic stability condition
» Mmay be written down as (C44Ce6— c§6)>0 with respect to the transition to the triclinic
Cas= G/ aeﬁz bS 9°F/ (922:024 + ngez + cgge3. (5) phase. We cannot check E§) for other crystals because of
the absence of a complete set of experimental data, namely,
In equilibrium, for a high-symmetric phase it follows that the experimental values of elastic constants, the experimental

aG/o’!ezzcgzeer cgge3+ Pext=0. Hence value of pressure for the phase transition and the type of
o symmetry at transition. However, we believe that it is pos-
C44= Cg4~ Pext- (6) sible to obtain similar equations for the FPT in other crystals

if we use combinations of the elastic moduli, expressing the

It is seen that the elastic modules, is softened with an |astic stability conditions given in Ref. 6 to be appropriate
increase in pressure and becomes zero, i.e., the acoustic or the transiti%ns in these %r stals as Well as the ﬁ"npecﬁanism
stability arises at the critical pressure: y

of the softening of the shift moduli considered in the present

pc=C914- 7) work. This mechanism.is based on th_e fa_\ct_ that ea_ch shift
modulus linearly falls with pressure, which is in line with the
Thus in our model the coupling between the acoustic modekinematic anharmonicity.
of different symmetry which equals— pe,;’ linearly grows Thus we show that the soft acoustic mode, causing the

in absolute magnitude with pressure and cannot be neglectgaoper FPT in anorthite and some other crystals, is mainly
as it was done in the recent reviéws mentioned above, the due to the kinematic anharmonicity, when other kinds of an-
amplitude vector components are present both alongZthe harmonicity are neglected.

and X axes in the soft acoustic mode. Therefore the second To conclude, it is shown that the kinematic anharmonicity
symmetry-breaking parametes;, which is also softened is expressed by the linear-quadratic coupling of the static

012102-3



BRIEF REPORTS PHYSICAL REVIEW B56, 012102 (2002

non-symmetry-breaking and the dynamic symmetry-harmonicity is common for the structural phase transitions,
breaking strain components. The fact that the abovesince it is caused by a nonlinear relation between the curvi-
mentioned anharmonicity in anorthite is the strongest is nolinear space of] coordinates of interatomic separation and

so obvious, even because of neglecting it in the recenspace of the Cartesian atomic displacements. We have ob-
review’ on the structural phase transitions. The authass  tained the equation for the crystals in which the softening of
sume the terms;e? to be neglected, due to the fact that the the acoustic modes is caused only by the kinematic anhar-
non-symmetry-breaking componergsare nearly five times Monicity, with whose help we can predict the pressure of the
smaller thare,. However, it follows from our equations that phase transtion to a triclinic phase if the initial elastic moduli
instead of the comparison of the tergsande, in the low- are known.

symmetry phase, the ternts,+3B,e3 and 3;c3;e; should This work was done under the financial support from the

be compared, wherB, is the coefficient of the terrej of  Russan Science Foundati¢Grants No. 00-05-65429, 01-
the free-energy expansion aivd 1,2,3,5. This kinematic an- 05-65373, and 02-05-653p&nd CRDF(REC-008.
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