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Mechanism of occurrence of soft mode at proper ferroelastic phase transitions
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It is shown that softening the acoustic mode, which brings about the occurrence of the proper ferroelastic
phase transition in some crystals, is substantially due to the ‘‘kinematic’’ anharmonicity. The latter arises at the
transition from the natural curvilinear coordinates of interatomic separation to the Cartesian atomic displace-
ments. The equation for such crystals has been obtained, with whose help it appears possible to predict the
pressure of the phase transtion to a triclinic phase if the initial elastic moduli are known.
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Currently a number of molecular-dynamics simulatio
and lattice-dynamics calculations of the soft modes, caus
ferroelastic phase transitions~FPT’s! in crystals, have been
made.1,2 The analytical equations describing the mechan
of occurrence of the soft mode are absent in these sim
tions. It is believed that the symmetry-breaking strain ari
spontaneously without any force being applied, occurring
a result of criticality in the elastic moduli. When studying th
FPT according to the Landau theory, the free-energy exp
sion in terms of the critical parameter, breaking the crys
symmetry, is done. Thereafter it is postulated that the coe
cient of the quadratic term of such an expansion falls to z
at the critical value of the external variable parameter. T
within this phenomenological approach the mechanis
causing the occurrence of the soft mode, remains unclea
understand this mechanism it is necessary to use a m
scopic model, which is developed in the present work. As
example, which illustrates this model, we consider the pro
monoclinic-triclinic FPT in Sr-anorthite@(Sr,Ca)Al2Si2O8#.
We have selected this compound because there is a com
set of experimental data for it, namely, the experimental v
ues of elastic constants, the experimental value of pres
for this transition, and the type of symmetry at transition. W
consider the proper FPT, because the coupling mechanis
the edge and the angle deformations of a unit cell app
more evident. This is due to the fact that we can consi
deformation of the entire unit cell, omitting displacements
individual atoms, as this takes place with improper ph
transition with participation of microparameters. In this wo
we try to clarify the most general reason for elastic instabi
of a crystal in the symmetric phase at the proper FPT. On
basis of the analysis made, using the ‘‘ball-and-perf
springs’’ model,3 we come to a conclusion that the bas
mechanism causing the proper FPT in some crystals is
’’kinematic’’ anharmonicity. It is shown that even in the ex
pression for the free energy, when only the terms contain
linear elastic moduli are taken into account, it is possible
obtain anharmonic terms by conserving the quadratic te
in the expression of the strains as functions of the sp
derivatives of the displacements. The above anharmo
terms are expressed by linear-quadratic coupling between
non-symmetry-breaking strain components and
symmetry-breaking strain components. So far the soften
of the acoustic mode at the proper FPT at the expense of
coupling has not been described. For example, Pouget4,5 uses
0163-1829/2002/66~1!/012102~4!/$20.00 66 0121
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the terms of third and fourth orders when expanding the f
energy in the non-symmetry-breaking strain components
contrast to the present work, the above-mentioned com
nents do not cause changes in the crystal symmetry but
rise to the formation of modulated-strain structures. Cowl6

uses the terms of second and fourth orders in expansio
the free energy, but does not consider the linear-quadr
coupling between the static strains and acoustic waves w
form a part of the cubic anharmonicity. Anderson a
Blount7 have considered the cubic term in the free-ene
expansion in terms of the symmetry-breaking strain com
nents, which are equal to zero in the symmetric phase fo
nondegenerate order parameter. And in our work, the cu
term, i.e., the linear-quadratic coupling between the para
eters of different symmetry, results in softening the acou
mode even in the symmetric phase. Thus this term, as
posed to the above-mentioned work, is not equal to zero
the symmetric phase.

It should be recalled that, generally, non-symmet
breaking and symmetry-breaking order parameters are re
sented as the sum of static and dynamic parts:Qi5Qistat
1Qidyn . The static symmetry-breaking order paramet
Qistat describe a system in the thermodynamic equilibriu
and they are equal to zero in the high-symmetry phase. In
considered case, the dynamic symmetry-breaking order
rametersQidyn are caused by the acoustic lattice vibratio
with the wave numberq and the frequencyv(q) and they
are present both in the high-symmetry and the low-symme
phases. As the phase transition point is approached,
acoustic vibrations with the wave numberqy and the fre-
quencyv j (qy) become softer. For the monoclinic-triclini
transition in anorthites, the change in the point group
2/m
1̄, for which the active representation isBg . The sta-
bility condition with respect to this transition is given by th
eigenvalueBg of the symmetry-adapted dynamic matrix an
is of the form: (c44c662c46

2 ).0. The dynamic matrix yields
the soft acoustic mode with the propagation direction alo
the Y axis and with the polarization@2c46/c66, 0, 1#.8 The
origin of anharmonicity and destabilization of a crystal
disguised in the dynamic matrix, as it is the product of t
elastic-constant matrix and the kinematic coefficients mat
which are responsible for the behavior of normal modes o
crystal. As each of these matrices can serve as a sourc
anharmonicity, let us first consider the anharmonicity co
©2002 The American Physical Society02-1
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FIG. 1. Schematic illustration of phase transitions under the effect of the hydrostatic pressureP and the transverse optical wave~the soft
optical mode! for the triatomic T-O-T molecule and the transverse acoustic wave~the soft acoustic mode! for a monoclinic unit-cell~a!
before and~b! after phase transition.
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nected only with elastic-constant matrix. This ‘‘proper’’ a
harmonicity generally leads to an increase in elastic c
stants with pressure and, consequently, to a decrease i
amplitude of the symmetry-breaking transverse acoustic
brations. Hence the proper anharmonicity brings about
increase in the structure stability, and this cannot be rela
to the appearance of instability.

Let us now consider the anharmonicity connected o
with the kinematic coefficients matrix. We assume and f
ther this will be shown that the kinematic coefficients matr
expressing the transition from the natural curvilinearq coor-
dinates of interatomic separation to the Cartesian atomic
placements can result in the induced linear-quadratic c
pling between the normal modes of different symmetry. L
us illustrate this ‘‘kinematic’’ mechanism of occurrence
the anharmonicity resulting in the softening of the optic
vibrations at the improper phase transition in the triatom
molecule T-O-T. In Fig. 1, the solid lines correspond to t
static states of atoms in the thermodynamic equilibrium;
dashed lines correspond to the transverse optical vibrat
of the O atom. If a molecule is contracted, the forcesFr
~bond tensions! will arise. The sum of these forces gives th
transverse forceFt which causes the linear-bend phase tra
sition @see Fig. 1~b!#, whenFt.Fa , whereFa is a restoring
force, which is determined by the stiffness of the T-O
angle. When verifying the model, the authors3 found out that
in some crystals the kinematic anharmonicity completely
scribes soft optical modes at the improper phase transit
When analyzing the monoclinic-triclinic FPT we use simil
reasonings for the soft acoustic modes, which have a num
of essential differences from the optical modes. First,
frequency of the optical vibrations poorly depends on a w
vector, and the frequency of acoustic modes linearly depe
on a wave vector and approaches zero atk50, therefore
dynamic matrices for these vibrations should differ. In ad
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tion, the volume of an elementary cell does not vary for t
optical modes at vibrations and under pressure, while it v
ies for the longitudinal- acoustic modes, which can result
supplementary anharmonicity. Examination of the coupl
between the acoustic modes is more complicated, since
occur from changes in the deformation tensor, while the
tical modes, occurring from changes in the relative coor
nates of atoms, are the vector vibrations. So, by analogy w
the triatomic molecule, let us trace the occurrence of
transverse unstable forces which cause the monocli
triclinic FPT. We expect that when the hydrostatic pressur
applied to an elementary cell, the symmetry-breaking de
bilizing forces also occur due to the effect of stressed in
atomic bonds. Let us consider a monoclinic unit cell with
plane of symmetry with the normal oriented along theY axis
~see Fig. 1!. Let us take the quadratic expansion of the fr
deformation energy of this cell in the natural curvilinearq
coordinates (r i ,wk):

F5(
i j

ci j
0 ~Dr i /r 0i !~Dr j /r 0 j !/2

1(
kl

ckl
0 DwkDw l /21(

ik
cik

0 ~Dr i /r 0i !Dwk , ~1!

where i , j 51, 2, 3; k, l 54, 5, 6; ci j
0 , ckl

0 are the initial
elastic moduli for a high-symmetry phase;r 0i are the lattice
parameters prior to deformation. Note that we consider
quadratic expansion of the free energy in Eq.~1!, assuming
the contribution of the next cubic term of expansion to
insignificant, i.e., we use the ’’perfect springs’’ model an
hence the anharmonicity connected with a change of
elastic constants of interatomic bonds is not taken into
count. For simplicity, we consider the two-dimensional d
tortion of the sideb0c0 of the unit cell. This distortion in-
2-2
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cludes the compression strains of the edgesb0 ,c0, and the
shear straina. It is seen from Fig. 1~b! that Da5Dz/b0,
where b0 is a lattice parameter along theY axis prior to
deformation. Now the quadratic expansion of free energ
written down as

F5c22
0 ~Db/b0!2/21c23

0 ~Db/b0!~Dc/c0!/2

1c33
0 ~Dc/c0!2/21c44

0 ~Dz/b0!2/2. ~2!

Now let us present this energy in terms of the Cartes
atomic displacements. As far as the edgeb0 deviates in theZ
direction under the effect of the acoustic wave, the expans
of the Db may be written as

Db5@~b01Dy!21~Dz!2#1/22b0>Dy1~Dz!2/2b0 .
~3!

It is seen thatDb involves both the linear components alon
the Y axis and the quadratic components along the perp
dicular Z axis. That is just a result of the action of the kin
matic matrix and nonlinear transformation from the naturaq
coordinates to the Cartesian coordinates. Physically,
means that the linear strains in the curvilinearq space of
interatomic separation would provide nonlinear strains in
rectangularx space, in which atomic displacements are co
sidered. As a result, we obtain that the expansion in Eq.~3!
may be written down asDb/b05e21e4

2/2, as in the mono-
clinic cell Dw45Da52e4. As a result, we obtain the fol
lowing expression for the Gibbs energy

G5F1pextV>c22
0 e2

2/21c23
0 e2e31c33

0 e3
2/2

1~c22
0 e21c23

0 e31c44
0 !e4

2/21pext~e21e3!. ~4!

From this equation it follows that the static non-symmet
breaking strain componentse2stat ande3stat enter the linear-
quadratic coupling with the symmetry-breaking strain co
ponente4dyn , causing the change of the force constants
transverse vibrations. Hence the elastic modulus for the
formation, which breaks the crystal symmetry so thatw4
Þ90°, may be written down as

c445]2G/]e4
25b0

2]2F/]z25c44
0 1c22

0 e21c23
0 e3 . ~5!

In equilibrium, for a high-symmetric phase it follows th
]G/]e25c22

0 e21c23
0 e31pext50. Hence

c445c44
0 2pext . ~6!

It is seen that the elastic modulusc44 is softened with an
increase in pressure and becomes zero, i.e., the acoust
stability arises at the critical pressure:

pc5c44
0 . ~7!

Thus in our model the coupling between the acoustic mo
of different symmetry which equals ‘‘2pext’’ linearly grows
in absolute magnitude with pressure and cannot be negle
as it was done in the recent review.9 As mentioned above, the
amplitude vector components are present both along thZ
andX axes in the soft acoustic mode. Therefore the sec
symmetry-breaking parametere6, which is also softened
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with the pressure increase, is to be introduced into Eq.~4! to
obtain a more accurate quantitative estimation. As the e
b0 declines in theX andZ directions under the effect of th
acoustic wave, the expansionDb will have the following
form:

Db/b0>Dy/b01~Dx!2/2b0
21~Dz!2/2b0

2

5e21e4
2/21e6

2/2. ~8!

As the tensor componentse4 ande6 interact, a combination
of the modulic44c662c46

2 tends to zero faster than a separa
modulusc44. In this case, after substitution of expansion~8!
into the Gibbs potential, we obtainc44c662c46

2 5(c44
0

2pext)(c66
0 2pext)2c46

0 250 at the transition point. Hence

pc5~c44
0 1c66

0 !/22@~c44
0 1c66

0 !2/42c44
0 c66

0 1c46
02#1/2. ~9!

Using the data c44
0 511.5 GPa,c66

0 524.6 GPa,c46
0 5

212.9 GPa, for the initial moduli of Sr-anorthite from Re
1, we havepc53.6 GPa, and the experimental pressu
from Ref. 10 for this transition is (3.260.4) GPa. When
deriving Eq. ~9! we used the perfect springs model, wh
only the kinematic anharmonicity can arise as result of
transition from the natural curvilinear atomicq coordinates
~interatomic bonds and angles between them! to the Carte-
sian coordinates of the atomic displacements. Therefore
coincidence between Eq.~9! and experiment has appeared
be unexpected, since this means that predominantly k
matic anharmonicity brings about a decrease of the so
velocity with pressure, when all other anharmonicities a
neglected, i.e., thus leading to instability of the anorth
crystal lattice. It turned out that berlinite AlPO4(pc
'15 GPa),11 quartz SiO2(pc'22 GPa),12 and natrolite
Na16@Al16Si24O80#•16H2O(pc'3 GPa) ~Ref. 13! behave
like anorthite at transition from different symmetry phases
the triclinic one. The experimental pressures of the tran
tions, shown in the brackets, approximately coincide with
pressures obtained from Eq.~9!. The above-indicated crys
tals as well as anorthite have the elastic stability condit
(c44c662c46

2 ).0 with respect to the transition to the triclini
phase. We cannot check Eq.~9! for other crystals because o
the absence of a complete set of experimental data, nam
the experimental values of elastic constants, the experime
value of pressure for the phase transition and the type
symmetry at transition. However, we believe that it is po
sible to obtain similar equations for the FPT in other cryst
if we use combinations of the elastic moduli, expressing
elastic stability conditions given in Ref. 6 to be appropria
for the transitions in these crystals as well as the mechan
of the softening of the shift moduli considered in the pres
work. This mechanism is based on the fact that each s
modulus linearly falls with pressure, which is in line with th
kinematic anharmonicity.

Thus we show that the soft acoustic mode, causing
proper FPT in anorthite and some other crystals, is ma
due to the kinematic anharmonicity, when other kinds of a
harmonicity are neglected.

To conclude, it is shown that the kinematic anharmonic
is expressed by the linear-quadratic coupling of the st
2-3
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non-symmetry-breaking and the dynamic symmetr
breaking strain components. The fact that the abov
mentioned anharmonicity in anorthite is the strongest is n
so obvious, even because of neglecting it in the rec
review9 on the structural phase transitions. The authors9 as-
sume the termseie4

2 to be neglected, due to the fact that th
non-symmetry-breaking componentsei are nearly five times
smaller thane4. However, it follows from our equations tha
instead of the comparison of the termsei ande4 in the low-
symmetry phase, the termsc44

0 13B4e4
2 and ( ic2i

0 ei should
be compared, whereB4 is the coefficient of the terme4

4 of
the free-energy expansion andi 51,2,3,5. This kinematic an-
c
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harmonicity is common for the structural phase transitio
since it is caused by a nonlinear relation between the cu
linear space ofq coordinates of interatomic separation andx
space of the Cartesian atomic displacements. We have
tained the equation for the crystals in which the softening
the acoustic modes is caused only by the kinematic an
monicity, with whose help we can predict the pressure of
phase transtion to a triclinic phase if the initial elastic mod
are known.
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