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In recent years, lattice dynamics and molecular
dynamics methods were used to numerically calculate
the soft modes causing ferroelastic phase transitions in
crystals [1, 2]. Calculations of this type do not use ana-
lytical expressions describing the mechanism for the
appearance of soft modes. It is assumed that symmetry-
breaking deformation arises spontaneously without
applying any force and appears due to critical softening
of elastic moduli. In the Landau theory of ferroelastic
phase transitions, the free energy is expanded in powers
of order parameters breaking crystal symmetry. The
deformations not breaking symmetry are not treated as
order parameters, because it is assumed that they are
not involved in the transition. Next, it is postulated that
the coefficient of the quadratic term of expansion, i.e.,
the elastic modulus, must vanish when the external
variable thermodynamic parameter reaches its critical
value. Within this approach, the reason for the forma-
tion of a soft mode remains unclear.

Of particular interest is physics of high-pressure fer-
roelastic phase transitions. Under pressure, the symme-
try lowers to triclinic, after which amorphization
occurs, as was demonstrated by an example of anorthite
and quartz in [3, 4]. In this work, we consider the
proper monoclinic–triclinic ferroelastic phase transi-
tion in Sr-anorthite (Sr,Ca)Al
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Si

 

2

 

O

 

8

 

). A ferroelastic
phase transition is considered proper when the order
parameter and the spontaneous deformation behave
identically under symmetry operations. In a proper fer-
roelastic phase transition, one of the components of the
spontaneous deformation tensor can be taken as a criti-
cal parameter [1]. We studied a proper ferroelastic
phase transition because in this case cell deformation
can be treated as a whole, i.e., without specifying dis-
placements of particular atoms, as in the case of an
improper transition, and, hence, the mechanism of
interaction between deformations of cell edges and

angles becomes more pictorial. We aimed at revealing
the most general reason for crystal destabilization. We
demonstrated that the soft acoustic mode responsible
for the instability of the ferroelastic lattice is due to the
linear–quadratic interaction between symmetric and
antisymmetric deformations, which is presently
neglected in the literature [5], although this interaction
is the strongest among the anharmonic interactions.

In our previous work [6], we found that the energy
of ferroelastic phase transition is due to symmetric
components, and, therefore, their contributions cannot
be neglected, as was done previously. The effect of
symmetric components of the deformation tensor on
the phase transition is accounted for by the term 

 

p

 

ext

 

V

 

in the Gibbs potential of a crystal subjected to external
pressure 

 

G

 

 = 

 

F

 

 + 

 

p

 

ext

 

V

 

, where 
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is the free energy, 
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≈

 

e
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 + 
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3

 

 is the relative change in the volume of the
unit cell, and 

 

e

 

i

 

 

 

are components of the deformation ten-
sor. The importance of making allowance for the effect
of symmetric deformations was also pointed out in [7],
where mechanical stress was calculated for a triatomic
T–O–T molecule distorted under pressure from linear
to bent. In that work, the authors examined how the
transverse destabilizing force appears under the action
of external forces applied to the molecule on two sides
along the T…T line.

Recall that in the general case the symmetric and
antisymmetric order parameters can be represented as
the sum of the static and a small dynamic components
related to lattice vibrations: 

 

Q

 

j

 

 = 

 

Q

 

j

 

stat

 

 + 

 

Q

 

j

 

dyn

 

. The anti-
symmetric order parameters 

 

Q

 

j

 

stat

 

 describe the system
in thermodynamic equilibrium and are zero in the sym-
metric phase. The antisymmetric order parameters

 

Q

 

j

 

dyn

 

 describe lattice vibrations with certain frequen-
cies 

 

ω

 

j

 

 and wave vectors 

 

k

 

j

 

 and occur in both symmetric
and low-symmetry phases. On approaching the point of
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phase transition, some vibrations with eigenfrequen-
cies 

 

ω

 

j

 

(

 

k

 

j

 

) are softened. In the case of the monoclinic–
triclinic transition, the 

 

B

 

g

 

 representation, to which the
acoustic branch belongs, is the eigenvalue of the
dynamic matrix that accounts for the direction and
polarization of the acoustic phonon wave vector. The
stability condition for the dynamic matrix can be repre-

sented as (

 

c

 

44

 

c

 

66

 

 – ) > 0. This matrix corresponds to
the propagation of three acoustic waves, with the low-
est frequency soft mode being the transverse acoustic
wave propagating along 

 

Y

 

 with the polarization
[

 

−

 

c

 

46

 

/

 

c

 

66

 

, 0, 1] [5].

Figure 1 shows the origin of the transverse antisym-
metric force by an example of the phase transition in a
triatomic T–O–T molecule. Solid lines show the static
positions of atoms in thermodynamic equilibrium, and
dashed lines show the transverse vibrations of the O
atom. The forces 

 

F

 

r

 

 appear under the action of the con-
tracted interatomic bonds, and their sum gives the tan-
gential force 

 

F

 

t

 

 that provokes the bending phase transi-
tion in Fig. 1b if 

 

F

 

t

 

 > 

 

F

 

a

 

, where 

 

F

 

a

 

 is the restoring force
caused by the stiffness of the T–O–T angle.

In our analysis of the monoclinic–triclinic transi-
tion, we will use analogous reasoning. We assume that,
on applying hydrostatic pressure to the unit cell, anti-
symmetric destabilizing forces also appear under the
action of contracted interatomic bonds. By analogy
with the triatomic molecule, Fig. 1 illustrates the action
of static pressure and dynamic shear stress caused by a
transverse acoustic wave on the monoclinic cell.

Let us consider a monoclinic cell with the normal to
symmetry plane aligned with the 

 

Y 

 

axis. For this cell,
the quadratic expansion of the free energy of deforma-
tion in the natural curvilinear 

 

q 

 

coordinates (

 

r

 

i

 

, 

 

ϕ

 

k

 

) is

(1)

where 

 

i

 

, 

 

j

 

 = 1, 2, 3; 

 

k

 

, 

 

l

 

 = 4, 5, 6;  and  are the ini-
tial elastic moduli in the symmetric phase; and 

 

r

 

0

 

i

 

 are
the initial cell parameters; small nondiagonal terms of
the angle–bond type are omitted. For the sake of sim-
plicity, we will first consider the two-dimensional
deformation of one of the faces 

 

b

 

0

 

c

 

0

 

, which includes the
deformation of edges 

 

b

 

0

 

 and 

 

c

 

0

 

 and angle 

 

α

 

. In Fig. 1b
it is seen that 

 

∆α

 

 = 

 

∆

 

z

 

/

 

b

 

0

 

, where 

 

b

 

0

 

 is a parameter corre-
sponding to the 

 

Y

 

 axis in the initial cell. The correspond-
ing quadratic expansion of free energy is written as

(2)

Let us express this energy in Cartesian coordinates.
Since the edge 

 

b

 

0

 

 departs in the 

 

Z

 

 direction under the

c46
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action of the acoustic wave, the power-series expansion
of ∆b has the form

(3)

It is seen that ∆b contains not only linear components
along the Y axis, but also quadratic components along
the perpendicular direction. This means that linear
deformations in the natural curvilinear space, in which
the deformations of chemical bonds and angles in the
crystal lattice are considered, cause nonlinear deforma-
tions in Cartesian coordinates, in which atomic dis-
placements are considered. In terms of the deformation
tensor components, Eq. (3) takes the form ∆b/b0 = e2 +

/2, because in the monoclinic cell ∆ϕ4 = ∆α = –e4. As

∆b = b0 ∆y+( )2 ∆z( )2+[ ] 1/2
b0 ∆y ∆z( )2/2b0.+≅–

e4
2

Fig. 1. Schematic illustration of phase transitions under the
action of hydrostatic pressure P and transverse acoustic
wave for the triatomic T–O–T molecule and the monoclinic
crystal lattice (a) before and (b) after phase transition.
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a result, for the Gibbs energy G = F + pextV, one obtains
the expression

(4)

from which it follows that, upon applying hydrostatic
pressure to the unit cell, the symmetric static deforma-
tions of the e2stat and e3stat bonds come into linear–qua-
dratic interaction with the dynamic deformations of the
transverse acoustic wave e4dyn, leading to a change in
the force constants of transverse vibrations. Hence, for
the direction of symmetry-breaking deformations dis-
torting the cell so that the angle ϕ4 ≠ 90°, the effective
force constant is

(5)

Under equilibrium conditions, ∂G/∂e2 = e2 + e3 +
pext = 0; hence, for the symmetric phase one finds

(6)

It is seen that the elastic modulus c44 softens upon the
pressure buildup and vanishes (i.e., acoustic instability
appears) at the critical pressure

(7)

As was mentioned above, the amplitude vector of the
soft acoustic mode has components not only along Z,
but also along X. Therefore, for a more accurate quan-
titative estimation, one must introduce in Eq. (4) the
second antisymmetric parameter e6, which also softens
under pressure. Now, because the edge b0 departs in the
X and Z directions under the action of the acoustic
wave, the power-series expansion of ∆b has the form

(8)

Due to the interaction between parameters e4 and e6, the

combination of moduli c44c66 –  approaches zero
faster than the individual modulus c44; therefore, after
substituting expansion (8) into the Gibbs potential, one

obtains that c44c66 –  = (  – p)(  – p) –  =
0 in the transition point. Hence,

(9)

Using the data for the initial moduli of Sr anorthite [1]

 = 11.6 GPa,  = 24.7 GPa, and  = –12.7 GPa,
one finds pc = 3.86 GPa, whereas the experimental pres-
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sure for this transition is 3.2 ± 0.4 GPa [8]. The above
moduli were obtained within the pair potential model
with parameters fitted so that the calculated and exper-
imental cell parameters were the same. These calcu-
lated moduli should be considered as approximate
because of the lack of experimental data for the elastic
moduli of Sr anorthite. Therefore, it is unreasonable to
expect full coincidence between the theory and experi-
ment.

As a result, we have demonstrated that the soft
acoustic mode responsible for the proper ferroelastic
phase transition is caused by the linear–quadratic inter-
action between the static symmetric and the dynamic
antisymmetric deformations, which is currently
neglected in the literature, although it is the strongest
among the anharmonic interactions. The authors of [5]

justify the neglect of the terms ei  by the fact that
symmetric components ei are smaller than e4 by about
a factor of five. However, it follows from our expres-

sions that the terms  and Σi ei with i = 1, 2, 3, and
5 must be compared rather than ei and e4. This interac-
tion is common to structural phase transitions because
it results from the nonlinear relation between the curvi-
linear natural coordinate space, in which the deforma-
tions of chemical bonds and angles in the crystal lattice
are considered, and the Cartesian space of atomic dis-
placements upon applying hydrostatic pressure to the
ferroelastic. In addition, we have obtained an expres-
sion which can be used to predict phase transition pres-
sure provided that the initial elastic moduli are known.
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