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Many computer calculations of the structure of�-quartz at high pressures have been
performed in the last few years.1–4 Such calculations take account of the distortion of the
tetrahedra, such that the interactions between various structural parameters become nu-
merous and complicated and the particular parameters responsible for the basic mecha-
nisms leading to the deformation of the structure remain obscure. To determine these
mechanisms we propose a simple valence-force model in which only the two structural
parameters that are most pressure-sensitive stand out. One such parameter was found in
previous work — the rotation angle of the SiO4 tetrahedra, which is usually employed for
describing the� –� transition in quartz.5 This angle is the main parameter of the defor-
mation of the structure at high pressures, and it is thought that it can lead to an instability
that gives rise to amorphization.6 We have found another parameter by analyzing the
numerous deformation parameters presented in the literature for the deformation of tet-
rahedra. We noticed that they can be reduced to a single parameter — the angle of twist,
which has not been previously considered as an order parameter at high pressures. We
determine the angle of twist as the deviation from the 90-degree angle between two
opposite symmetric edges of tetrahedra in�-quartz. As a result, we were able to find the
characteristic features that remained unnoticed in the numerical calculations, specifically,
that the rotation angle at high pressures approaches saturation and that the angle of twist,
conversely, starts to vary nonlinearly and is therefore the parameter that is mainly re-
sponsible for structural instability. This information is important, since despite a number
of experimental and theoretical investigations of the amorphization of quartz under
pressure,1–9 there is still no detailed description of such a transition.

The models developed previously for explaining high-temperature anomalies cannot
be used to describe the process of amorphization of�-quartz,10–13since they neglect the
large distortions of the tetrahedra. In our valence-force model of the deformation of
�-quartz, which takes account of the distortion of the tetrahedra, the parameters related
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with the smallest force constants and therefore vary most strongly with pressure play the
main role. For example, if the main force constants are considered, then the constant of
the Si–O bonds is much larger than the force constant of the O–Si–O angles, and the
latter constant is much greater than the force constant of the Si–O–Si angles. For this
reason, for our model we employ as the key parameters the rotation angle, which is
related with the force constant of the Si–O–Si angle, and the angle of twist, which is
responsible for deformation inside tetrahedra and is related with the force constant of the
O–Si–O angles. To give a complete description of the structure of quartz it is necessary
to introduce four additional parameters — two symmetric O–Si–O angles and two Si–O
bond lengths. According to the experimental data, these four parameters are virtually
pressure-independent at high pressures,14 and for this reason we shall assume them to be
constant. All parameters are relative and are measured from the parameters of ideal
�-quartz with the Si–O distance equal to 1.5993 Å . A calculation using existing experi-
mental structural data14 shows that even at pressures above 3 GPa the rotation angle� is
approximately 100 times greater than the four parameters mentioned above, and the angle
of twist �, describing the distortion of the tetrahedra, is approximately 10 times greater
than these small parameters. Therefore, in what follows we shall use only the angle of
twist to describe the distortion of tetrahedra.

Ordinarily, only the rotation angle is used to construct an analytical model of the
deformation of the structure of quartz.5,10 We shall examine the Gibbs potential, which,
besides the rotation angle, also takes account of the angle of twist:

G�3K	��	0�	���	0�	m��2�3Ks�
2��P��P �v, �1�

wherev�(V�V0)/V0 is the relative change in the unit-cell volume,	 is the Si–O–Si
angle, andK	 and Ks are the force constants�in GPa� of the Si–O–Si and O–Si–O
angles, respectively. Here we neglect the small off-diagonal force constants. The quantity
P� is the internal pressure that converts the�-quartz structure isothermally into the
�-quartz structure.15 This potential takes into account the strain arising in the�-quartz
structure as a result of the fact that the Si–O–Si angle at which there is no deformation
is 	m�147° while the corresponding angle in ideal�-quartz is	0�155°. Using the
expansion ofV and	 in terms of the parameters� and�, we obtain the Gibbs potential
whose variable part has the form


G�K��
2/2�K��2/2�g1��g2��2�g4�4, �2�

where all coefficients are linear functions of pressure. The equilibrium values of� and�
for the minimum of this potential are

�����K��2g1g2 /K��/�4g4�2g2
2/K���

1/2, �3�

���g1�g2�2�/K� . �4�

Using these equations, we shall construct the functions�(P) and�(P) displayed in Figs.
1 and 2. Analyzing the function�(P) at high pressures, we find that it approaches
saturation as a result of the contribution of the coefficientg4, which increases linearly
with pressure. Previously, this saturation was presumed on the basis of experimental
data,14 but it was never substantiated. It should be noted that the saturation of the rotation
angle with increasing pressure is due to an increase of its effective stiffnessK��*
��2
G/��2, which attests to an increase in the stability of the structure and cannot be
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attributed to the onset of instability. It is evident from the pressure dependence�(P) that
at high pressures the angle of twist of tetrahedra starts to grow nonlinearly, and therefore
the effective stiffness of the angle of twistK��* ��2
G/��2�K� and, with it, certain
other elastic moduli decrease, and an instability giving rise to a disordered structure can
arise. To check this hypothesis we performed calculations of the lattice dynamics. These
calculations were performed not with the interatomic potentials, as is ordinarily done, but
rather using the valence-force field. This approach makes it possible to obtain the pres-
sure dependence of the force constants in an explicit form. The force field of an�-quartz
crystal is described in Ref. 17 using the scaled force constantsKqi ,q j

0 of molecular silicate

clusters calculated by quantum-chemical methods.

FIG. 1. Rotation angle� of SiO4 tetrahedra in�-quartz versus pressure, calculated using Eq.�3�. The squares
show the experimental data of Ref. 14; at higher pressures, for trigonal quartz the silicon and oxygen coordi-
nates have not yet been determined.16

FIG. 2. Angle of twist� of SiO4 tetrahedra in�-quartz versus pressure, calculated using Eq.�4�. The squares
show the experimental data of Ref. 14. The circle at 22 GPa shows the average angle of twist�A1

for the
triclinic phase, calculated using the structural data of Ref. 19. For clarity, the dashed curve shows the linear
dependence.
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In our calculations we employed the indicated force constants, to which, in order to
take the pressure into account, we added the second derivatives of the termPV in the
Gibbs potential with respect to the normal coordinateqi about the equilibrium positions
of the atoms, determined by the parameters�(P) and �(P) from Eqs.�3� and �4�. A
similar procedure was performed in Ref. 18. As a result we obtained the pressure-
dependent effective stiffnesses of the normal coordinates

Kqi ,q j
* �Kqi ,q j

0 �P��2V/�qi�q j�.

The low-frequency transverse acoustic mode in the direction��,�,0� in the Brillouin zone
was calculated using these effective stiffnesses and the matrix of the kinematic coeffi-
cients, which are pressure-dependent. It was found that the velocity of an acoustic wave
near the point is determined by the torsional stiffness��(K�E1 ,�E1

* )1/2 �where the

parameter�E1
is discussed below� and approaches zero with increasing pressure. The

form of these soft acoustic oscillations is a sum of the amplitudes of the torsional trans-
verse wave, which mainly entails displacements of the oxygen atoms, and an acoustic
transverse wave, in which it is primarily the Si atoms that are displaced. This softening
can give rise to the appearance of imaginary frequencies of the torsional modes and
therefore instability of the tetrahedra with respect to twisting and then to amorphization.

It was recently ascertained that, according to experimental16 and theoretical19 inves-
tigations, a triclinic phase forms at 21 GPa prior to amorphization. Calculation of the
coordination of the atoms in this phase showed that one of the three Si atoms in a cell is
in fivefold coordination, very close to that described in Ref. 20. Thus at a triclinic
transition some Si atoms are transferred into a fivefold coordination. The torsional oscil-
lations in the soft modes described above can lead to such a transition. We shall deter-
mine the particular parameters that are responsible for the transition to the triclinic phase.

Each of the three tetrahedra of a cell in�-quartz has one degree of freedom asso-
ciated with twisting. Three degrees of freedom give rise to different twisting�1 , �2 , and
�3 of the three tetrahedra in a cell in�-quartz; this gives rise to three torsional parameters
�A1

�(�1��2��3)/3, �E1
�(�2��1)/2, and �E2

��3��1/2��2/2, which contain static
and dynamic components. The static part determines the equilibrium parameters of the
structure, and the dynamic part determines the vibrations about these equilibrium posi-
tions, which make a contribution with a definite amplitude to the normal modes of the
crystal. The static part of the average angle�A1

was previously defined as the twist. The
static parts�E1

and �E2
are zero in�-quartz and nonzero in the triclinic phase. Our

calculations, using structural data for the triclinic phase,19 showed that the main torsional
parameter is�E1

. This parameter leads to the same increase of the angle�2 and decrease
of the angle�1, so that the average angle�A1

continues to fall on the curve in Fig. 2. The
soft modes giving rise to a transition to the triclinic phase contain the symmetry-breaking
shear modes, which contain a large contribution from theE-type torsional vibrations as
well as from the longitudinal modes, which are responsible for the volume deformation of
the cell to which theA1-type torsional vibrations contribute. The transition to the triclinic
phase strongly intensifies the amorphization process, since because of symmetry breaking
the torsional parameter�A1

contributes not only to the bulk modulus but also to the shear
modulus, sharply decreasing it. Amorphization of this new triclinic structure occurs with
a further increase of the pressure above 21 GPa. In view of the fact that x-ray diffraction
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analysis shows nucleation of the amorphous phase even at 15 GPa,6 the transition to the
triclinic structure can be regarded as an intermediate stage of amorphization.2

In Refs. 21 and 22 it is assumed that an elastic instability at 25 GPa, at which the
frequency of the soft acoustic modes becomes imaginary in the entire Brillouin zone,
gives rise to amorphization of the�-quartz structure. In analyzing the microscopic origin
of the softening of the phonon modes, these authors neglect the angle of twist. In our
view this model is incomplete, and the authors themselves are of the opinion that it is
hypothetical.3 Other authors1 assert that amorphization starts at a lower pressure, 21.5
GPa, because of dynamic instability, where the frequency of the soft mode becomes
imaginary near the point�1/3, 1/3, 0� in the Brillouin zone. On this basis we believe that
the completely symmetric�A1

and incompletely symmetric�E1
torsional oscillations

make the main contribution to the elastic and dynamic instability, irrespective of which
one plays the main role in the amorphization process and in the shear instability, which
gives rise to the transition to the triclinic phase.

In conclusion, we have proposed a new valence-force model of the deformation of
�-quartz, taking account of the distortions of the tetrahedra. According to this model the
rotation angle of the tetrahedra at high pressures tends to saturation and therefore the
effective stiffness of the structure with respect to this angle increases, which attests to an
increase in the stability of the structure and cannot lead to instability. At the same time
the smaller parameter — the angle of twist — starts to increase nonlinearly with pressure,
and this results in softening of the low-frequency acoustic branch and leads to instability
of the tetrahedra with respect to twisting, which gives rise to a transition to the triclinic
phase and then to amorphization of the structure.
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