МАТЕРИАЛЫ МЕЖДУНАРОДНОГО МЕЖДИСЦИПЛИНАРНОГО СИМПОЗИУМА "Физика низкоразмерных систем и поверхностей" LDS-3 Ростов-на-Дону, сентябрь 2012 г.

Сопредседатели Оргкомитета международного междисциплинарного симпозиума "Физика низкоразмерных систем и поверхностей" LDS-3 д-р физ.-мат. наук Ю.М. Гуфан, д-р физ.-мат. наук В.Г. Шавров

> Материалы международного междисциплинарного симпозиума "Физика низкоразмерных систем и поверхностей" LDS-3 под общей редакцией д-ра физ.-мат. наук Ю.М. Гуфана

УДК 534-16;534.014;535.375.54

ФОТОЛЮМИНЕСЦЕНЦИЯ И КОМБИНАЦИОННОЕ РАССЕЯНИЕ НАНОПОРОШКОВ КРЕМНИЯ

© 2013 г. Н. Н. Овсюк, ¹ В. А. Володин^{2, 3}, Prafulla K. Jha⁴

E-mail: ovsyuk@igm.nsc.ru

Исследованы нанопорошки, полученные испарением массивного образца кремния мощным пучком электронов с энергией 1.4 МэВ. Нанопорошки были исследованы методами фотолюминесценции (ФЛ) и спектроскопии комбинационного рассеяния света (КР). При моделировании спектров ФЛ оказалось, что зависимости энергии рекомбинации для нанокристаллов в вакууме и в оболочке диоксида кремния получились близкими, что позволило определить средний радиус частиц, который совпал с оценками, полученными из анализа спектров КР с использованием улучшенной модели локализации фононов при учете дисперсии фононов не только по величине квазиимпульса, но и по направлению.

DOI: 10.7868/S0367676513090342

Внимание к нанопорошкам кремния связано как с фундаментальным научным интересом к кремниевым нанокристаллам, так и с возможностью их практического применения. Например, в последнее десятилетие ученые всего мира прилагают усилия для разработки новых светоизлучающих диодов на основе кремниевых нанокристаллов. Известно, что с уменьшением размера частиц появляется неопределенность в импульсе носителей заряда, локализованных внутри частиц. Таким образом, могут происходить прямые переходы электронов в результате рекомбинации электронно-дырочных пар, которые не могут быть реализованы в кристаллическом кремнии (как в непрямозонном материале), где для рекомбинации необходимо участие фононов. Кроме того, кремниевые нанокристаллы – это перспективный материал для использования в ячейках памяти, потому что они имеют такие преимущества по сравнению с обычными ячейками, как более высокая плотность записи и более низкое напряжение в процессе записи. Нанокристаллы разных размеров светятся разными цветами и могут быть использованы для маркировки биомолекул в качестве альтернативы обычных органических красителей флуорофоров [1, 2]. В противоположность обычным красителям эти материалы очень фотостабильны. Кроме того, единый источник может возбудить несколько цветов: спектры поглощения на самом деле очень широкие, а излучение ограничивается узкой полосой с центром при характерной длине волны для определенного размера нанокристаллов.

В данной работе были исследованы нанопорошки, полученные с использованием ускорителя электронов прямого действия ЭЛВ-6 производства ИЯФ СО РАН. Ускоритель был оборудован системой выпуска пучка в атмосферу. Энергия облучающих электронов составляла 1.4 МэВ. Мощность электронного пучка поддерживалась достаточной для испарения массивного образца кремния в атмосфере аргона с давлением газа несколько выше атмосферного. Нанопорошки кремния собирали на специальном фильтре и в дальнейшем хранили в открытой атмосфере, поэтому они оказывались покрытыми слоем оксида кремния.

На рис. 1 приведен спектр фотолюминесценции (ФЛ) нанопорошка кремния при комнатной температуре. Этот спектр представляет собой широкий пик с центром при длине волны 580 нм, что соответствует энергии рекомбинации 2.1 эВ, а значение ширины запрещенной зоны для кремния составляет 1.1 эВ. Такая разница в 1 эВ обусловлена квантово-размерными эффектами в нанокристаллах кремния. Большая ширина пика, по-видимому, связана с дисперсией нанокристаллов по размерам. Для моделирования спектров $\Phi \Pi$ в нанокристаллах кремния была решена квантовомеханическая задача о расчете энергетических уровней в квантовой яме в сферически симметричном случае. Воспользуемся моделью эффективных масс. В традиционном случае предполагается непрерывность на границе только производных волновых функций. Такое граничное условие является правильным, когда эффективная масса

¹ Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, Новосибирск.

² Учреждение Российской академии наук Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск.

³ Новосибирский государственный университет, Новосибирск.

⁴ Department of Physics, Bhavnagar University, India.

Рис. 1. Спектр фотолюминесценции нанопорошка кремния (возбуждение — импульсный N_2 -лазер, $\lambda = 337$ нм, температура 300 К).

постоянна. В нашем случае имеется скачок эффективной массы на границе квантовой точки, который сильно влияет на положение уровней энергии электронов и дырок, поэтому мы используем условие непрерывности потока, которое при зависящей от координаты массе сводится к соот-

ношению $\frac{\Psi'_1}{m_1} = \frac{\Psi'_2}{m_2}$, где m_1 и m_2 — эффективные массы носителей в первой и во второй областях

соответственно [3]. При этом равенство волновых функций на границе остается в силе, значения волновых функций на границе областей 1 и 2 равны $\psi_1 = \psi_2$. Так как частицы находятся на открытом воздухе и имеют множество свободных связей, они имеют слой окисла. Следовательно, целесообразно провести расчеты уровней энергии для гетероструктуры Si-SiO₂. Зонная диаграмма для нанокристалла в диэлектрике представлена на рис. 2. Но для начала рассчитаем знергии для более простой системы нанокристалл в вакууме, когда барьеры для электронов и дырок будут другими и ширины оптической щели может сильно различаться. В этом случае для электронов в зоне проводимости величина барьера для выхода в вакуум определяется электронным сродством, а для электронов в валентной зоне — энергией порога фотоэмиссии. Задача для нахождения энергетических уровней электронов и дырок в сферически-симметричном случае решена Ландау [4]. Уравнение Шрёдингера в сферических координатах записывается как

$$-\frac{\hbar^{2}}{2m}\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right)+\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\phi^{2}}\right]\psi(\vec{r})+U(r)\psi(\vec{r})=E\psi(\vec{r}).$$

Используем метод разделения переменных, волновую функцию ищем в виде произведения функции, зависящей только от *r*, и функции, зависящей от углов θ и ϕ : $\psi(\vec{r}) = R(r) \cdot Y(\theta, \phi)$.

Рис. 2. Зонная диаграмма для нанокристалла в диэлектрике.

Тогда для радиальной зависимости волновой функции, если считать что $R(r) = \frac{\chi(r)}{r}$, получим уравнение

$$-\frac{\hbar^2}{2m}\frac{\partial^2\chi(r)}{\partial r^2} + \left[U(r) + \frac{l(l+1)\hbar^2}{2mr^2}\right]\chi(r) = E\chi(r).$$
(1)

Здесь *l* – значение орбитального момента. В нашем случае внутри ямы потенциал *U* – это отрицательная константа, а вне ямы потенциал равен нулю. Таким образом, *U* – это величина барьера. Даже для нулевого орбитального момента эта задача решается аналитически только для бесконечных барьеров. В этом случае вне ямы волновая функция равна нулю, если энергию *E* отсчитывать от дна ямы: $\chi(r) = A \cdot \sin(kr)$, где значение константы *k* зависит от энергии как $k = \left[\frac{2mE}{\hbar^2}\right]^{1/2}$ и энергия *E* находитов на условения

энергия *E* находится из условия равенства нулю волновой функции на границе раздела. Обозначим радиус квантовой ямы как a; a = d/2, где d – это диаметр нанокристалла (рис. 2). Тогда условие равенства нулю на границе $k_0a = n\pi$, где n – целое число. Отсюда

$$E_n = \frac{\hbar^2}{2m} \left(\frac{\pi n}{a}\right)^2.$$
 (2)

В случае конечного барьера волновая функция на границе яма—барьер не зануляется. Электроны туннелируют в подбарьерную область. Уравнение надо решать численно, используя вышеупомянутые граничные условия [3]. В этом случае для состояния с нулевым орбитальным моментом уравнение Шрёдингера в первой области (внутри частицы) записывается как

$$-\frac{\hbar^2}{2m_1}\chi_1''(r) = \frac{\hbar^2 k^2}{2m_1}\chi_1(r), \qquad (3)$$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 77 № 9 2013

Рис. 3. Сравнение зависимости энергии рекомбинации от радиуса частицы для систем *nc*-Si-вакуум и *nc*-Si-SiO₂.

где $\chi(r) = rR(t)$, а R(r) – радиальная часть волновой функции, появляющаяся при разделении переменных в сферических координатах. Общее решение этого уравнения: $\chi(r) = A \sin(kr) + B \cos(kr)$, однако, так как $\chi(0) = 0$, решение в первой области (как и для случая бесконечных барьеров) $\chi_1(r) = A \sin kr$. Во второй области (вне частицы) уравнение Шрёдингера имеет вид

$$-\frac{\hbar^2}{2m_2}\chi_2''(r) + U\chi_2 = \frac{\hbar^2 k^2}{2m_2}\chi_2(r), \qquad (4)$$

следовательно, $\chi_2(r) = B \exp(\xi r) + C \exp(-\xi r)$, где $\xi = \sqrt{\frac{2m_2U}{\hbar^2} - k^2}$. Проводя сшивку решений на границе областей (где r = a) и учитывая, что в силу нормировки волновой функции B = 0 (функция не может расти на бесконечности) получим

$$\frac{m_2}{m_1} [ka\cos(ka) - \sin(ka)] + \left[1 + \sqrt{\frac{2m_2Ua^2}{\hbar^2} - (ka)^2}\right] \sin(ka) = 0.$$
(5)

Данное уравнение решали численно, находили дискретные значения волнового вектора \vec{k}_0 (зависящие от радиуса квантовой ямы *a*), удовлетворяющие данному уравнению. Затем находилась соот-

ветствующая энергия электрона $E = \frac{\hbar^2 k_0^2}{2m_1}$, а так

как значение \bar{k}_0 зависит от радиуса квантовой ямы *a*, тем самым находили зависимость энергии уровней от радиуса квантовой ямы (частицы). Известно, что в кристаллическом кремнии эффективная масса электронов и дырок зависит от направления. Электроны имеют массы $m_{\parallel} = 0.98m_0$, $m_{\perp} = 0.2m_0$, где m_0 – масса свободного электрона. По-

Рис. 4. Спектры КР объемного Si (пунктирная линия) и нанопорошка Si, полученного испарением электронным пучком в атмосфере аргона.

скольку ориентация нанокристаллов произвольная, необходимо использовать среднюю эффективную массу электронов в кремнии. Энергия

электрона в нанокристалле имеет вид
$$E = \frac{\hbar^2 k_x^2}{2m_x} +$$

$$\frac{\hbar^2 k_y^2}{2m_y} + \frac{\hbar^2 k_z^2}{2m_z}$$
, где $m_x = m_y = m_\perp$, $m_z = m_\parallel$. Так как

 $E = \frac{\hbar^2 k^2}{2m_{ef}}$, то эффективная масса $m_{ef} = 3m_{\perp} \times m_{ef}$

 $\times m_{\parallel}/(2m_{\perp} + m_{\parallel}) = 0.26m_0$. Эффективная масса тяжёлых дырок в кремнии составляет 0.5m₀. Легкие дырки будут обладать большей энергией, и соответствующий им уровень квантования энергии в нанокристалле будет лежать ниже. Задача решается как для зоны проводимости, так и для валентной зоны. Для системы нанокристаллы кремния в вакууме U = 4.05 эВ (электронное сродство для кремния). Для расчета уровня энергии в валентной зоне необходимо решить самосогласованную задачу, где величина барьера будет зависеть от уровня энергии. Но, ввиду того что уровень энергии в валентной зоне будет достаточно малым (менее 1 эВ) по сравнению с величиной $E_g + \chi = 5.15$ эВ, будем считать энергию барьера U = 5.15 эВ. Энергия рекомбинации представляет собой, очевидно, сумму энергий уровней и ширины запрещенной зоны. Затем мы провели расчеты уровней энергии для гетероструктуры Si-SiO₂. Ширина запрещенной зоны диоксида кремния составляет 8.7 эВ, высота электронного барьера для электронов -3.2 эВ, для дырок – 4.3 эВ. Будем считать массы электронов и дырок в SiO₂ равными $m_e = 0.42m_0$ и $m_{\rm h} = 0.32 m_0$ соответственно. На рис. 3 приведено сравнение зависимости энергии рекомбинации от радиуса частицы для систем nc-Si-вакуум и nc-Si-SiO₂. Видно, что зависимости энергии рекомбинации для нанокристаллов в вакууме и в оболочке диоксида кремния получились близкими, что было неочевидно при такой разности величин барьеров для электронов и дырок. Из рис. 1 и 3 видно, что средний радиус частиц составляет около 1.8 нм. Спектр КР на рис. 4, где наблюдается смещение пика от нанокристаллов в область более низких частот от позиции пика объемного кремния, также был использован для оценки среднего размера нанокристаллов. Вследствие снятия правил отбора по импульсу в нанокристаллах конечного размера в спектрах КР проявляются колебательные моды с волновыми векторами, отличными от нуля. Если форма нанокристаллов близка к сферической, интенсивность КР можно записать как [5, 6]

$$I(\omega) = A \sum_{i=1}^{6} \int_{0}^{1} [n(\omega_{i}(q)) + 1] \times \frac{4\pi q^{2} \exp(-q^{2} r_{0}^{2}/4)}{(\omega - \omega_{i}(q))^{2} + (\Gamma/2)^{2}} dq,$$

где $n(\omega)$ — фактор заполнения Бозе—Эйнштейна, $\omega_i(q)$ — дисперсия фононов в *i*-ой фононной ветви, Γ — ширина линии, r_0 — радиус нанокристалла и q — волновой вектор.

Мы развили модель локализации фононов в нанокристаллах для случая, когда учитывается дисперсия фононов не только по величине квазиимпульса, как в общепринятой модели [5-7], но и по направлению [8]. Значительное уточнение модели состоит также в том, что дисперсию фононов рассчитывали по хорошо апробированной модели Китинга [9], а не аппроксимировали эмпирическими выражениями, как в использованных ранее подходах. Расчеты, сделанные по представленной модели, позволяют точнее определять размеры нанокристаллов кремния из анализа экспериментальных спектров комбинационного рассеяния света. На рис. 5 представлена разница между положением пиков КР от нанокристаллов и от монокристаллического кремния, из которого видно, что результаты расчетов по нашей модели лучше совпадают с экспериментальными данными и с оценками полученными из анализа спектров ФЛ.

Таким образом, исследование нанопорошков кремния, полученного испарением массивного образца кремния мощным пучком электронов, Смещение рамановского типа, см⁻¹

Рис. 5. Сдвиг положения пика КР от локализованных в нанокристаллах различного размера оптических фононов. Кружки – расчетные данные по общепринятой модели Ченга [7]; сплошная линия – данные по нашей модели [8]; кресты – данные эксперимента.

позволяет утверждать, что эти нанопорошки содержат нанокристаллы со средним размером около 3–4 нм. Эти порошки дают фотолюминесценцию в видимой области спектра и открывают возможности для разработки светоизлучающих структур на их основе.

Работа поддержана Федеральной целевой программой "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы, проект № 14.В37.21.1069.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Han M., Gao X., Su J.Z., Nie S. //* Nat. Biotechnol. 2001. V. 19. P. 631.
- 2. Rosenthal S.J. // Nat. Biotechnol. 2001. V. 19. P. 621.
- 3. Bastard G. // Phys. Rev. B. 1981. V. 24. P. 5693.
- 4. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1989. Р. 767.
- 5. *Campbell I.H., Fauchet P.M.* // Solid State Commun. 1986. V. 58. P. 739.
- Paillard V., Puech P., Laguna M.A., Carles R. // J. Appl. Phys. 1999. V. 86. P. 1921.
- 7. Cheng W., Ren S.-F. // Phys. Rev. B. 2002. V. 65. 205305.
- 8. Володин В.А., Сачков В.А. // ЖЭТФ. 2013. Т. 143. № 1. С. 100.
- 9. Keating P.N. // Phys. Rev. 1966. V. 145. P. 637.