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INTRODUCTION

The current interest in silicon nanopowders is due
both to the fundamental scientific interest in silicon
nanocrystals, and to the possibility of their practical
application. In the last decade, scientists around the
world have worked to develop new light�emitting
diodes based on silicon nanocrystals. The reduction in
particle size is known to generate uncertainty in the
momentum of the charge carriers localized inside the
particles. Direct transitions of electrons can thus
occur as a consequence of electron�hole pair recombi�
nation, which is not observed in crystalline silicon (as
indirect material), where recombination requires
phonon participation. In addition, silicon nanocrys�
tals are a promising material for memory cells, since
they have such advantages as higher recording density
and lower voltage in the recording process, compared
to conventional cells. Nanocrystals of different sizes
emit light with different wavelengths and can therefore
be used as an alternative to conventional organic fluo�
rescent dyes for labeling biomolecules [1, 2]. In con�
trast to conventional dyes, these materials are very
photostable. In addition, a single source can excite
several colors: the absorption spectra are actually quite
wide, and the radiation is limited to a narrow band
centered on the wavelength characteristic of nanoc�
rystals of the given size.

In this work, we investigated nanopowders pro�
duced using the ELV�6 direct�action electron acceler�
ator at the Budker Institute of Nuclear Physics, Sibe�
rian Branch, Russian Academy of Sciences. The
accelerator was equipped with a system for emitting
the beam into the atmosphere. The energy of bom�
barding electrons was 1.4 MeV. The power of the elec�

tron beam was high enough to evaporate a bulk silicon
sample in an argon atmosphere at a gas pressure
slightly higher than atmospheric. Silicon nanopowders
were collected on a special filter and subsequently
stored in the open atmosphere; they were thus coated
with a silicon dioxide layer.

Figure 1 shows the PL spectrum of silicon nanopo�
wder at room temperature. This spectrum presents a
broad peak centered at a wavelength of 580 nm, corre�
sponding to a recombination energy of 2.1 eV, while
the forbidden band for silicon is 1.1 eV. This difference
in 1 eV is due to quantum�size effects in the silicon
nanocrystals. The broad peak width is likely associated
with the size dispersion of the nanocrystals. To simu�
late the PL spectra of the silicon nanocrystals, the
quantum�mechanical problem of calculating the
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Fig. 1. Photoluminescence spectrum of Si nanopowder.
An N2 pulse laser (λ = 337 nm) was used for excitation,
T = 300 K.
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energy levels in a quantum well was solved for a spher�
ically symmetric case. In the model of effective
masses, only the continuity of wave functions deriva�
tives near the boundary between a spherical well and
barrier is traditionally assumed. Such boundary condi�
tions are correct when the effective mass is constant.
In our case, there is a discontinuity in the effective
mass at the boundary of quantum dot that strongly
influences the position of the energy levels of electrons
and holes. We therefore use the condition of flow con�
tinuity, which at the mass depending on the coordinate

is reduced to the relation  where m1 and m2

are the effective masses of carriers in the first and sec�
ond regions, respectively [3]. The equality of wave
functions at the boundary remains valid, and the val�
ues of wave functions at the boundary of regions 1 and
2 are equal; i.e.,  Since the particles are in
contact with air and have many free bonds, they
should be covered by oxide layer. It is therefore logical
to calculate the energy levels of the Si–SiO2 hetero�
structure. The band diagram for a nanocrystal located
inside the dielectric is presented in Fig. 2. But to begin,
let us calculate the energy of a simpler nanocrystal sys�
tem in a vacuum when barriers differ for electrons and
holes, and the width of the optical gap can also change
greatly. For the electrons in the conduction band, the
value of the exit barrier in a vacuum is determined by
the electron affinity, while for electrons in the valence
band it depends on the energy of the photoemission
threshold. The problem of finding the energy levels of
electrons and holes in a symmetrical sphere was solved
by Landau in [4]. In spherical coordinates, the
Schrödinger equation can be written as

We separate the variables and seek the wave function in
the form of the product of two functions:

, one of which depends only on r,
while the other depends on the θ and ϕ angles. 
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case when  we then obtain the equation

(1)

where l is the orbital angular momentum. Inside the
well, potential U is a negative constant; outside the
quantum dot, the value of the potential is zero. Thus,
U is the value of barrier. Even for zero orbital angular
momentum, this problem can be solved analytically
only for infinite barriers, when the wave function out�
side the quantum dot is zero and inside the quantum
dot  Since energy E is measured from
the bottom of the well, parameter k depends on E as

, and we can find the value of energy E

from the boundary condition. The wave function at
the interface should be zero. If the radius of the quan�
tum dot is a (a = d/2, where d is the diameter of a
nanocrystal) (Fig. 2), from the boundary conditions

 where n is integer. Therefore,

(2)

With finite barriers, the wave function does not vanish
at the dot–barrier interface. The electrons can tunnel
into barriers. We must therefore solve Eq. (1) numeri�
cally with the boundary conditions for the wave func�
tion and its derivative [3]. If l = 0, the Schrödinger
equation in the first region (inside the nanocrystal)
can be written as

(3)

where χ(r) = rR(r), R(r) is the radial part of the wave
function if we separate the variables in spherical coor�
dinates. The general solution to this equation is  =

 +  however, χ(0) = 0, so χ1(r) =
Asinkr. In the second area (outside the nanocrystal),
the Schrödinger equation is
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 Combining the solutions at the interface

(where r = a) and considering that according to the

( )
( ) ,

r
R r

r

χ
=

2 22

2 2

( ) ( 1)
( ) ( ) ( ).

2 2

r l l
U r r E r

m r mr

⎡ ⎤∂ χ +− + + χ = χ⎢ ⎥∂ ⎣ ⎦

ћћ

( ) sin( ).r A krχ = ⋅

1 2

2
2mEk ⎡ ⎤=
⎢ ⎥⎣ ⎦ћ

0 ,k a n= π

( )
22

.
2

n
nE

m a
π

=
ћ

2 2 2

1 1
1 1

''( ) ( ),
2 2

kr r
m m

− χ = χ

ћ ћ

( )rχ

sin( )A kr cos( ),B kr

2 2 2

2 2 2
2 2

''( ) ( ),
2 2

kr U r
m m

− χ + χ = χ

ћ ћ

2( )rχ exp( )B rξ exp( ),C r−ξ

22
2

2
.

m U
k−

ћ

1 2
U

d

Ec1

E
v1

Fig. 2. Band structure of Si nanocrystal in a dielectric
matrix.
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normalization of wave function B = 0 (the function
cannot grow at infinity), we find

(5)

This equation was solved numerically, and discrete val�

ues of wave vector  (depending on the radius of
quantum dot a) were found. The values of the energy

levels were then found:  since the value of 

depends on the radius of quantum dot a. The depen�
dence of the energy levels on quantum dot (particle)
radius was therefore determined. In crystalline silicon,
the effective electron mass is known to be anisotropic.
There are longitudinal and transversal masses m|| =
0.98m0 and m⊥ = 0.2m0, where m0 is the free electron
mass. Since the orientation of nanocrystals is arbitrary,
we must use the average effective electron mass in sili�
con. The energy of an electron in a nanocrystal is E =

 +  +  where mx = my = m⊥, mz = m||.

Since  we can obtain the effective mass: mef =

3m⊥ × m||/(2m⊥ + m||) = 0.26m0. The effective mass of
the heavy holes in silicon is 0.5m0. The energy levels of
light holes are lower, and can be excluded from consid�
eration. This problem was solved for both the conduc�
tion and the valence band. In the case of silicon
nanocrystals with a free interface, U = 4.05 eV
(the value of electron affinity of silicon). To calculate
the energy level in the valence band, we must solve the
self�consistent problem in which the barrier depends
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on the level of energy. Since the energy level in the
valence band is quite low (<1 eV) relative to Eg + χ =
5.15 eV, we may assume that the value of the barrier
U = 5.15 eV. The recombination energy is obviously
the sum of the energy levels and the band gap. We then
calculate the energy levels for the Si–SiO2 hetero�
structure: the band gap of silicon dioxide is 8.7 eV,
while the electronic barrier is 3.2 eV for the Si–SiO2

heterostructure and 4.3 eV for holes. The electron and
hole effective masses in SiO2 are me = 0.42m0 and mh =
0.32m0, respectively. Figure 3 compares the recombi�
nation energy dependence on the nanocrystal radius
for the nc�Si–vacuum and nc�Si–SiO2 systems. We
can see that the dependence of the recombination
energy of nanocrystals in a vacuum and in silica are
close, which was not obvious for the difference
between the barrier values for electrons and holes. We
can see from Figs. 1 and 3 that the average nanocrystal
radius is about 1.8 nm. The Raman spectrum in Fig. 4,
in which a shift of the nanocrystal peak in the range of
lower frequencies from the position of the bulk silicon
Raman peak is observed, was also used to estimate the
average size of the silicon nanocrystals. The shift and
broadening of the optical phonon Raman peaks was a
result of the law of phonon quasi�momentum conser�
vation being suspended due to phonon confinement in
nanocrystals [5, 6]. The law of quasi�momentum con�
servation was suspended in observance of the Heisen�
berg Uncertainty Principle.

It was assumed above than nanocrystals are spheres
with diameter d. Assuming that at the boundary of a
nanocrystal (a = L = d/2) the phonon amplitude is 1/e
(the phonon amplitude at center of nanocrystal is
unit), we can use the approach developed in [5, 6].

For crystals with diamond�type lattices [8], there
are generally six phonon branches with dispersions
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Fig. 3. Comparison of the recombination energy’s depen�
dence on particle radius for the nc�Si–vacuum and nc�Si–
SiO2 systems.
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Fig. 4. Raman spectra of bulk Si (dashed line) and Si nan�
opowder produced by electron beam evaporation in an
argon atmosphere.
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ωi(q), so the first order Raman spectrum for phonon
weighting function W(r, L) = exp(–4r2/L2) is:

(6)

where n(ω) is the Bose–Einstein factor, ωi(q) is
phonon dispersion of a phonon band, and Γ is the full
width at the half maximum of the Raman peak of a
single phonon,  r0 is radius of NCs. 

Wave numbers were varied from 0 up to qmax (the
edge of the Brillouin zone). For directions with high
symmetry (�100� and �111�) it should be noted that
some phonon branches are degenerated. The density
of states for phonons was proportional to q2dq.

Our model was considerably improved by consider�
ing the dispersion of phonons not only in the magni�
tude of quasi�momentum [5–7], but also in its direc�
tion [8]. Considerable refinement of the model was
achieved by using the familiar Keating model [9] to cal�
culate phonon dispersion instead of approximating it by
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empirical expressions, as was done in earlier
approaches. Calculations based on this model allow us
to determine the sizes of germanium nanocrystals more
precisely by analyzing the Raman spectra. Figure 5
shows the difference between the positions of the
Raman peaks of nanocrystals and single�crystal sili�
con, showing that the results of our model calculations
has are in better agreement with the experimental data
and the estimates obtained from our analysis of the PL
spectra.

CONCLUSIONS

Our study of silicon nanopowder produced by
evaporating bulk silicon with a powerful electron beam
suggests that such nanopowders contain nanocrystals
with average sizes of ~3–4 nm. These powders gener�
ate a photoluminescence signal in the visible region of
the spectrum and thus provide opportunities for devel�
oping light�emitting structures based on them.
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Fig. 5. Shift in the position of the Raman peak for optical
phonons confined in Si NCs of various sizes, relative to the
position of the Raman peak for bulk Si. The circles corre�
spond to the data calculated by Ren and Cheng [7]; the
solid curve corresponds to our results, obtained using our
improved model (dispersion was calculated in the Keating
model with allowance for the angular phonon dispersion).
Crosses represent our experimental data.


