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Abstract 
      Ferroelastic crystals are, in some respects, akin to 
the more familiar ferromagnetic and ferroelectric 
materials. Instead of spontaneous magnetisation or 
polarisation, these materials develop a spontaneous 
strain below a phase transition from paraelastic to 
ferroelastic. The transition is accompanied by critical 
behaviour of the elastic compliance (the effective 
susceptibility for the strain). Ferroelastics are defined 
by having switchable domains, or twins, which may be 
switched on application of an external stress. The 
ferroelastic phase transition is driven by a soft 
acoustic phonon mode at the Brillouin zone center, 
which produces transformation strain. 
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       It is shown that softening the acoustic mode, which brings about the 
occurrence of the proper ferroelastic phase transition in some crystals, is 
substantially due to the “kinematic” anharmonicity. The latter arises at the 
transition from the natural curvilinear coordinates of interatomic separation 
to the Cartesian atomic displacements. It is shown that the internal pressure 
may be represented as driving force for the proper ferroelastic phase 
transitions induced by cation exchange. It has been found that the internal 
stress tensor, generated by the cation exchange, is of a more complicated 
nature than the tensor of the external stress. This difference comes from a 
specific coupling of the substituting cations with local, microscopic 
displacements of the neighbouring atoms inside the unit cell. It becomes 
evident why in a number of experiments a significant difference in the action of 
internal and external pressures on the crystal structure is observed and, also, 
why the internal pressure causes the greater anisotropy than the external one. 
The equation has been obtained, with whose help it appears possible to predict 
the internal pressure of the proper monoclinic-triclinic ferroelastic phase 
transition induced by cation exchange if the initial effective elastic moduli are 
known. 
 
1. Introduction 
 Ferroelastics are practised widely in acoustooptic and acoustoelectric 
devices. In addition, the basic features of ferroelastics, such as mechanical 
twinnig, is observed in the high temperature superconductors. Nevertheless, 
there is still some vagueness in the nature of the ferroelastic phase transitions 
(FPTs). Currently a number of molecular-dynamics simulations and lattice-
dynamics calculations of the soft modes, causing FPTs in crystals, have been 
made (see, for example, [1, 2]). The analytical equations describing the 
mechanism of occurrence of the soft mode are absent in these simulations. It is 
believed that the symmetry-breaking strain arises spontaneously without any 
force being applied, occuring as a result of criticality in the elastic moduli. 
When studying the FPT according to the Landau theory, the free-energy 
expansion in terms of the critical parameter, breaking the crystal symmetry, is 
done. Thereafter it is postulated that the coefficient of the quadratic term of 
such an expansion falls to zero at the critical value of the external variable 
parameter. Thus, within this phenomenological approach the mechanism, 
causing the occurrence of the soft mode, remains unclear. To understand this 
mechanism it is necessary to use a microscopic model, which is developed in 
the present work. As an example, which illustrates this model, we consider the 
proper monoclinic-triclinic FPT in Sr-anorthite (Sr,Ca)Al2Si2O8. The physics 
of proper FPTs at high pressures is of particular interest, when the crystal 
symmetry is reduced to the triclinic structure with subsequent amorphization. 
The occurrence of the latter has been demonstrated with anorthite and quartz 
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[3, 4]. We have selected this compound, because there is a complete set of 
experimental data for it, namely, the experimental values of elastic constants, 
the experimental value of pressure for this transition, and the type of symmetry 
at transition. We consider the proper FPT, because the coupling mechanism of 
the edge and the angle deformations of a unit cell appears more evident. This is 
due to the fact that we can consider deformation of the entire unit cell, omitting 
displacements of individual atoms, as this takes place with improper phase 
transition with participation of microparameters. In the present work we try to 
clarify the most general reason for elastic instability of a crystal in the 
symmetric phase at the proper FPT. On the basis of the analysis made, using 
the “ball-and-perfect springs” model according to [5], we come to a 
conclusion, that the basic mechanism causing the proper FPT in some crystals 
is the “kinematic” anharmonicity [6]. It is shown that even in the expression 
for the free energy, when only the terms containing linear elastic moduli are 
taken into account, it is possible to obtain anharmonic terms by conserving the 
quadratic terms in the expression of the strains as functions of the space 
derivatives of the displacements. The above anharmonic terms are expressed 
by linear-quadratic coupling between the non-symmetry-breaking strain 
components and the symmetry-breaking strain components. So far the 
softening of the acoustic mode at the proper FPT at the expense of this 
coupling has not been described. For example, Pouget [7, 8] uses the terms of 
third and fourth orders when expanding the free energy in the non-symmetry-
breaking strain components, In contrast to the present work, the above 
mentioned components do not cause changes in the crystal symmetry but give 
rise to the formation of modulated-strain structures. Cowley [9] uses the terms 
of second and fourth orders in expansion of the free energy, but does not 
consider the linear-quadratic coupling between the static strains and acoustic 
waves which form a part of the cubic anharmonicity. Anderson and Blount 
[10] have considered the cubic term in the free-energy expansion in terms of 
the symmetry-breaking strain components, which are equal to zero in the 
symmetric phase for a nondegenerate order parameter. And in our work, the 
cubic term, i.e. the linear-quadratic coupling between the parameters of 
different symmetry, results in softening the acoustic mode even in the 
symmetric phase. Thus, this term, as opposed to the above-mentioned work, is 
not equal to zero in the symmetric phase. 
       It should be recalled that, generally, non-symmetry-breaking and 
symmetry-breaking order parameters are represented as sum of static and 
dynamic parts: Qi  = Qistat + Qidyn. The static symmetry-breaking order 
parameters Qistat describe a system in the thermodynamic equilibrium and they 
are equal to zero in the high-symmetry phase. In the considered case, the 
dynamic symmetry-breaking order parameters Qidyn are caused by the acoustic 
lattice vibrations with the wave number q and the frequency ω(q) and they are 
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present both in the high-symmetry and the low-symmetry phases. As the phase 
transition point is approached, the acoustic vibrations with the wave number qy 

and the frequency ωj(qy) become softer. For the monoclinic-triclinic transition 
in anorthites, the change in the point group is 2/m ð 1, for which the active 
representation is Bg. The stability condition with respect to this transition is 
given by the eigenvalue Bg of the symmetry-adapted dynamic matrix and is of 
the form: (C44C66 – C2

46) > 0. The dynamic matrix yields the soft acoustic 
mode with the propagation direction along Y axis and with the polarization   
[-C46/C66,0,1] [11]. The origin of anharmonicity and destabilization of a crystal 
is disguised in the dynamic matrix, as it is product of the elastic-constant 
matrix and the kinematic coefficients matrix, which are responsible for the 
behaviour of normal modes of a crystal. As each of these matrices can serve a 
source of anharmonicity, let us first consider the anharmonicity connected only 
with elastic-constant matrix. This “proper” anharmonicity generally leads to an 
increase in elastic constants with pressure and, consequently, to a decrease in 
the amplitude of the symmetry-breaking transverse acoustic vibrations. Hence, 
the proper anharmonicity brings about an increase in the structure stability, and 
this cannot be related to the appearance of instability. 
 
2. Role of kinematic anharmonicity for the structural 
phase transitions 
         Let us now consider the anharmonicity connected only with the 
kinematic coefficients matrix. We assume and further this will be shown that 
the kinematic coefficients matrix, expressing the transition from the natural 
curvilinear q coordinates of interatomic separation to the Cartesian atomic 
displacements can result in the induced linear-quadratic coupling between the 
normal modes of different symmetry. Let us illustrate this “kinematic” 
mechanism of occurrence of the anharmonicity resulting in the softening of the 
optical vibrations at the improper phase transition in the triatomic            
molecule T-O-T. In Fig. 1, the solid lines correspond to the static states of 
atoms in the thermodynamic equilibrium; the dashed lines correspond to the 
transverse optical vibrations of the O atom. If a molecule is contracted, the 
forces Fr (bond tensions) will arise. The sum of these forces gives the 
transverse force Ft which causes the linear-bend phase transition [see Fig. 
1(b)], when Ft > Fa, where Fa is a restoring force, which is determined by 
stiffness of the T-O-T angle. When verifying the model, the authors [5] found 
out that in some crystals the kinematic anharmonicity completely describes 
soft optical modes at the improper phase transition. When analyzing the 
monoclinic-triclinic FPT we use similar reasonings for the soft acoustic modes, 
which have a number of essential differences from the optical modes. First, the 
frequency of  the  optical  vibrations  poorly depends on a wave vector, and the  
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Figure 1. A schematic illustration of phase transitions under the effect of the hydrostatic 
pressure P and the transverse optical wave (the soft optical mode) for the triatomic      
T-O-T molecule and the transverse acoustic wave (the soft acoustic mode) for a 
monoclinic unit cell (a) before and (b) after phase transition. 
 
frequency of acoustic modes linearly depends on a wave vector and 
approaches zero at k = 0, therefore dynamic matrices for these vibrations 
should differ. In addition, the volume of an elementary cell does not vary for 
the optical modes at vibrations and under pressure, while it varies for the 
longitudinal acoustic modes, which can result in supplementary anharmonicity. 
Examination of the coupling between the acoustic modes is more complicated, 
since they occur from changes in the deformation tensor, while the optical 
modes, occurring from changes in the relative coordinates of atoms, are the 
vector vibrations. So, by analogy with the triatomic molecule, let us trace the 
occurrence of the transverse unstable forces which cause the monoclinic-
triclinic FPT. We expect that when the hydrostatic pressure is applied to an 
elementary cell, the symmetry-breaking destabilizing forces also occur due to 
the effect of stressed interatomic bonds. Let us consider a monoclinic unit-cell 
with a plane of symmetry with the normal oriented along Y axis (see Fig. 1). 
Let us take the quadratic expansion of the free deformation energy of this cell 
in the natural curvilinear q coordinates (ri, ϕk):   
 
F = ΣijC0

ij(∆ri/r0i)( ∆rj/r0j)/2 + ΣklC0
kl∆ϕk∆ϕl/2 + ΣikC0

ik(∆ri/r0i) ∆ϕk                (1) 
 
where i, j = 1, 2, 3; k, l = 4, 5, 6; C0

ij, C0
kl are the initial elastic moduli for the 

high-symmetry phase; r0i are the lattice parameters prior to deformation. Note 
that we consider the quadratic expansion of the free energy in equation (1), 
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assuming the contribution of the next cubic term of expansion to be insignificant, 
i.e. we use the “perfect springs” model and hence the anharmonicity connected 
with a change of the elastic constants of interatomic bonds is not taken into 
account. For simplicity, we consider the two-dimensional distortion of the side 
b0c0 of the unit cell. This distortion includes the compression strains of the 
edges b0, c0, and the shear strain α. It is seen from Fig. 1(b) that ∆α = ∆z/b0, 
where b0 is the lattice parameter along the Y axis prior to deformation. Now 
the quadratic expansion of free energy is written down as  
  
F = C0

22(∆b/b0)2/2 + C0
23(∆b/b0)(∆C /C0)/2 + C0

33(∆C/C0)2/2 + C0
44(∆z/b0)2/2.                         

                                                                                                                        (2)  
 

Now let us present this energy in terms of the Cartesian atomic displacements. 
As far as the edge b0 deviates in the Z direction under the effect of the acoustic 
wave, the expansion of the ∆b may be written as                      
 
∆b = [(b0 + ∆y)2 + (∆z)2]1/2 – b0 ≅ ∆y + (∆z)2/2b0.                                           (3) 
 
It is seen that ∆b involves both the linear components along Y axis and the 
quadratic components along the perpendicular Z axis. That is just a result of 
the action of the kinematic matrix and nonlinear transformation from the 
natural q coordinates to the Cartesian coordinates. Physically, this means that 
the linear strains in the curvilinear q space of interatomic separation would 
provide nonlinear strains in the rectangular x space, in which atomic 
displacements are considered. As a result, we obtain that the expansion in 
equation (3) may be written down as ∆b/b0 = e2+e4

2/2, as in the monoclinic cell 
∆ϕ4 = ∆α = - e4. As a result we obtain the following expression for the Gibbs 
energy 
                        
G = F + pextV ≅ C0

22e2
2/2 + C0

23e2e3 + C0
33e3

2/2  
          + (C0

22e2 + C0
23e3 + C0

44)e4
2/2 + Pext(e2 + e3).                                       (4)                      

 
From this equation it follows that the static non-symmetry-breaking strain 
components e2stat and e3stat enter the linear-quadratic coupling with symmetry-
breaking strain component e4dyn, causing the change of force constants of 
transverse vibrations. Hence the elastic modulus for the deformation, which 
breaks the crystal symmetry so that ϕ4 ≠ 900, may be written down as 
 
C44 = ∂2G/∂e4

2 = b0
2∂2F/∂z2 = C0

44 + C0
22e2 +C0

23e3.                                        (5) 
 
In equilibrium, for high-symmetric phase it follows that ∂G/∂e2 = C0

22e2 + 
C0

23e3 + Pext = 0.  Hence 
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C44 = C0
44 - Pext.                                                                                                (6) 

 
It is seen that the elastic modulus C44 is softened with an increase in pressure 
and  becomes zero, i.e., the acoustic instability arises at the critical pressure: 
 
Pc = C0

44.                                                                                                         (7) 
 
Thus in our model the coupling between the acoustic modes of different 
symmetry which equals “-Pext” linearly grows in absolute magnitude with 
pressure and cannot be neglected as the was done in the recent review [12]. As 
mentioned above, the amplitude vector components are present both along the 
Z and X axes in the soft acoustic mode. Therefore the second symmetry-
breaking parameter e6, which is also softened with the pressure increase, is to 
be introduced into equation (4) to obtain a more accurate quantitative 
estimation. As the edge b0 declines in X and Z directions under the effect of 
the acoustic wave, the expansion ∆b will have the following form: 
   
∆b/b0 ≅ ∆y/b0 +(∆x)2/2b20 +(∆z)2/2b2

0 = e2 + e4
2/2 + e6

2/2.                             (8) 
 
As the tensor components e4 and e6 interact, a combination of the moduli 
C44C66 - C46

2 tends to zero faster than a separate modulus C44. In this case, after 
substitution of  expansion (8) into the Gibbs potential, we obtain: C44C66 - C46

2 
= (C0

44 –Pext)(C0
66 –Pext) - C0

46
2 = 0 at the transition point. Hence 

      
Pc = (C0

44 + C0
66)/2 – [(C0

44 + C0
66)2 /4 - C0

44C0
66 + C0

46
2]1/2.                         (9) 

 
        Using the data C0

44 = 11.5 GPa, C0
66 = 24.6 GPa, C0

46 = -12.9 GPa, for the 
intial moduli of Sr-anorthite from [1], we have Pc = 3.6 GPa, and the 
experimental pressure from [13] for this transition is (3.2 ± 0.4) GPa. When 
deriving equation (9) we used the perfect springs model, when only the 
kinematic anharmonicity can arise as result of the transition from the natural 
curvilinear atomic q coordinates (interatomic bonds and angles between them) 
to the Cartesian coordinates of the atomic displacements. Therefore the 
coincidence between equation (9) and experiment has appeared to be 
unexpected, since this means that predominantly kinematic anharmonicity 
brings about a decrease of the sound velocity with pressure, when all other 
anharmonicities are neglected, i.e., thus leading to instability of the anorthite 
crystal lattice. It turned out that berlinite AlPO4, Pc ≈15 GPa [14], quartz SiO2, 
Pc ≈ 22 GPa [15], and natrolite Na16[Al16Si24O80]×16H2O, Pc  ≈ 3 GPa [16] 
behave like anorthite at transition from different symmetry phases to the 
triclinic one. The experimental pressures of the transitions, shown in the 
brackets, approximately coincide with the pressures obtained from equation 
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(9). The above-indicated crystals as well as anorthite have the elastic stability 
condition (C44C66 –C246) > 0 with respect to the transition to the triclinic phase. 
We cannot check up equation (9) for other crystals because of the absence of a 
complete set of experimental data, namely, the experimental values of elastic 
constants, the experimental value of pressure for the phase transition and the 
type of symmetry at transition. However, we believe that it is possible to 
obtain similar equations for the FPT in other crystals if we use combinations of 
the elastic moduli, expressing the elastic stability conditions given in [9] to be 
appropriate for the transitions in these crystals as well as the mechanism of the 
softening of the shift moduli considered in the present work. This mechanism 
is based on the fact that each shift modulus linearly falls with pressure, which 
is in line with the kinematic anharmonicity. 
          
3. Difference of the action of the external and the 
internal pressures on the crystal structure 
         Now, we shall consider the proper monoclinic-triclinic FPT in Sr-
anorthite induced by Ca and Sr cation exchange rather than by the external 
pressure, as it was described above. In other words, the same approach is used 
for the case of the internal (chemical) pressure. Owing to the fact that the Ca2+ 
radius is smaller than the Sr2+ ionic radius, the effective radius of the A-site 
decreases with increasing Ca content, thus enhances the internal strain in the 
crystal. We believe that this “chemical” tension of the interatomic bonds is 
most convenient to use as thermodynamic parameter of the Gibbs potential 
instead of a usual cation content, because a correct physical description of the 
FPT requires a consideration of both the atomic displacements and the forces 
which cause them. We will try to show the validity of introduction of the 
internal (chemical) pressure into the Gibbs potential as the driving force for the 
proper FPT, because the internal pressure is interpreted by many scientists as 
an imaginary, unreal and unobservable value. 
      Based on papers [17 - 24], which deal with the internal pressure in crystals, 
it follows that the internal pressure is a real value which is capable of going 
into action differing from the external pressure. For example, according to [17] 
the authors conclude that the “chemical” pressure is a more complicated 
parameter than the mechanical one. Various types of the “chemical” pressure 
can lead to the phase Pbnm - R3c transition in manganites with different signs 
of a cell volume change. According to [18], the authors find an unexpected 
minimum of Mn-O bond lengths in manganites as function of a cation radius 
and connect it with the reversal of a sign of the internal pressure. This reversal 
of a sign of the internal pressure could, in fact, be a common effect in 
perovskites, which deserves to be explored in other materials as well. They 
advocate that application of the external pressure on these compounds 
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produces quite different structural effects than the ''internal'' pressure. In [19], 
the authors believe the application of the mechanical pressure to copper-oxide 
superconductors to induce an increase in Curie temperature Tc. If the 
mechanical pressure is replaced by a chemical one, the effect becomes 
negative and a decrease of Tc is observed. In addition, it was observed that the 
chemical pressure anisotropy is greater than the mechanical one. To sum up, 
we can say that, first, the experiments show that the internal pressure - being a 
more complicated parameter as compared to the external one - brings about a 
greater anisotropy. And, second, at the present time, the cause of the fact that 
the internal and the external pressures in anisotropic materials are not similar 
parameters, is poorly understood. 
         Let us discuss how to describe the difference of the action of the external 
Pext and the internal Pint pressures on the crystal structure and why the internal 
pressure is a more complicated parameter, bringing about a greater anisotropy. 
Let us dwell on the crystal compressed by the hydrostatic pressure Pext. A 
complete description of a geometrical structure of a lattice is given by 6 
independent parameters determining a primitive cell (three lengths of the 
translation vectors and three corners between them) and by 3n coordinates of 
atoms in a cell (n is the number of atoms in a primitive cell). The basis of the 
internal deformations is determined by a set of atomic Cartesian displacements 
x, identical in all primitive cells, i.e. by the shifts of the absolutely rigid Brave 
sublattices. It is clear that from 3n internal deformations only (3n - 3) are 
linear-independent deformations, and 3 correspond to translations of a crystal 
as a whole. The external deformations are determined by 6-dimensional basis, 
which is given by the deformation tensor Eij of the second rank, with diagonal 
elements describing relative changes of the linear sizes of a crystal along the 
Cartesian axes, and non-diagonal elements describing the shift deformations 
[25]. The absolute Cartesian coordinates of the atomic displacement X are 
clearly related to the deformation tensor of a primitive cell E and to the change 
of the atomic coordinate x inside the primitive cell relative to the chosen centre 
of masses with the coordinates R by the following correlation: X = x + ER. 
The change of the density of the Gibbs free energy as function of x and E is 
written down in quadratic approximation as 
 
G(x,E)= - fx x – fE E + x Fxx x/2 + x FxE E + E FEE E/2,                               (10) 
 
where we use the tensor notation for derivatives fx = - ∂G/∂x,  fE = - ∂G/∂E,  
Fxx = ∂2G/∂x ∂x,  FxE = ∂2G/∂x ∂E,  FEE = ∂2G/∂E ∂E, initially taken at x = 0, 
Е = 0.  
     In equilirium a crystal should satisfy the following conditions: 1) the 
internal resulting forces on any atom be equal to fx = 0; 2) the external forces, 
acting on a unit cell are fЕ  = (σext)ij = -Рextδij,  because the hydrostatic pressure 
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corresponds to the diagonal stress tensor, which has equal components σii = -
Pext for isotropic crystals; 3) in equilibrium, the Gibbs potential has a minimum 
relative to the internal atomic displacements x and  the deformations Е: Fxx x + 
FxE E = 0, FxE x + FEE E + Pextδij = 0. Taking into account these equilibrium 
conditions, the Gibbs potential can be reduced to the form: G(E)= Pext V + E C 
E/2, where F = E C E/2 is a free energy in quadratic approximation, V ≈ E11 + 
E22 + E33 is a relative change of the volume of a unit cell and the matrix of 
elastic constants C is determined as 
  
C = FEE - FxE F-1

xx FxE                                                                                   (11) 
 
It is seen that these elastic moduli are of a complex origin, (see also [26, 27]), 
because the first term on the right-hand side of equation (11) is a contribution 
of the external deformations, and the second term is a contribution of the 
internal deformations. It is evident from this equation that just the second term, 
which is connected with the optical-acoustic coupling FxE, determines the 
ferroelastic instability. 
        Now, we can consider the origin of the internal pressure in the process of 
the cation exchange. In this case, the introduction of the new ions generally 
produces an overall cell deformation E as well as a change in local atoms 
coordinates x. Two tensors correspond to these two kinds of the deformations: 
σdir (direct) - the mechanical stress tensor, directly affecting the lattice 
parameters due to the change in radii of nodal atoms in the lattice in the 
process of the cation exchange, and σind (indirect) - the mechanical stress 
tensor, indirectly affecting the lattice parameters due to the change in radii of 
non-nodal atoms inside a unit cell. Thus, the complete tensor of the internal 
stress is equal to σint = σdir  + σind. In this case, the forces, responsible for the 
direct coupling with lattice parameters, are fЕ  = (σdir)ij = -Рdirδij and, also, the 
internal resulting forces on atoms, responsible for the indirect coupling with 
lattice parameters, are fx = - ∂G/∂x. We emphasize that fx ≠ 0 only when these 
forces act on the atoms at sites lacking inversion symmetry [27]. In 
equilibrium, the Gibbs potential has a minimum relative to the internal atomic 
displacements x and the deformations E: Fxx x + FxЕ Е - fx = 0, FxЕ x + FЕЕ Е - 
σdir = 0.  The solution to this system of equations is the following: 
   
x = F-1

xx(1+ FxЕ C-1FxЕ F-1
xx ) fx + F-1

xx FxЕ C-1σdir,  
E = - C-1FxЕ F-1

xx fx – C-1σdir = - C-1(σind + σdir) = - C-1σint                          (12) 
 
where  σind = - FxE F-1

xx fx and C  is determined by equation (11). 
       It is clear that the tensor σint, generated by the cation exchange, is of a 
more complicated nature than the tensor of the external stress, because not 
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only the term which is similar to the external pressure, but also the anisotropic 
term sind is present. This difference comes from a specific coupling of the 
substituting cations with local, microscopic displacements of the neighbouring 
atoms inside the unit cell. Thus, the macroscopic strain is partly a secondary 
effect of the cations exchange, whereas it is a primary effect of an external 
stress. In the first approximation, this internal stress can be expressed in terms 
of the isotropic internal pressure (σint)ij = -Рintδij. It is seen from equation (12) 
that the term σind is anisotropic, therefore its approximation by the internal 
pressure is rough and it is appropriate only for the isotropic crystals. Also, this 
approximation is possible due to the presence of spherically symmetrical 
cations in the cation exchange making all relevant forces spherically 
symmetrical or isotropic (assuming a disordered cation arrangement). 
Spontaneous strain, caused by internal isotropic pressure, can be anisotropic 
because of the anisotropy of elastic constants. Now it is possible to give the 
following definition of the internal pressure: “internal pressure due to the 
concentration N of new ions is equal to such an external pressure which at the 
presence of additional forces on atoms fx would result in the same macroscopic 
deformation as does the concentration N”. 
      We believe that the internal pressure can be experimentally measured. In 
[28, 29], the authors declare that Cr3+ containing crystals have been extensively 
used to measure temperature and pressure, since Cr3+ ions exhibit the strong 
luminescent lines of R1 and R2. The origin of R fluorescence line is a radiative 
decay of excited d3 electrons of substitutional Cr3+ ions. The ions are in the 
octahedral coordination with the oxygen ions in the corundum structure. When 
the octahedral arrangement is strained, the crystal field at Cr ions alters, and 
consequently the frequency of R lines changes. This is the basis for high-
pressure measurements in diamond-anvil cells and for the measurement of 
stresses in ceramics and composites [30]. We expect that if we manage to 
introduce Cr-ions into the solid solutions with different content of substituting 
cations, then we will be able to measure the value of the internal pressure due 
to the cation exchange by the shifts of the luminescent lines R1 and R2 in the 
spectra of each sample. 
 
4. Comparison of model and experimental dependences 
       Hereinafter we are going to study the Gibbs potential for Sr-anorthite, 
using for simplicity the internal pressure approximation: G(E)= PintV + E C 
E/2. The linear Lagrangian strain tensor of the form eij = (1/2)(∂ui/∂x0j + 
∂uj/∂x0i) is commonly used to describe the FPT. As in the process of the phase 
transition, spontaneous deformation increases, it may appear that the non-linear 
terms should be taken into account in the strain tensor. This tensor is called finite 
and defined as Eij = (1/2)[(∂ui/∂x0j+∂uj/∂x0i)+Σk(∂uk/∂x0i) (∂uk/∂x0j)], where the 
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vector u = x-x0 determines displacements of a point, located at x0 prior to 
deformation and at x after the deformation. The indices i,j,k correspond to 
Cartesian coordinates, each of them runing 1, 2, 3. For the sake of convenience 
of comparison with experiment, we shall express the components of the strain 
tensor in terms of the crystal lattice parameters. The corresponding expressions 
for the components of the linear strain tensor in the explicit form are obtained 
in [31]. We have obtained the relations for the components of the finite strain 
tensor, which can be expressed in terms of the components eij in the Voigt 
notations with the unique b axis in the following form: E1 = e1+e1

2/2+e6
2/2; E2 

= e2+e2
2/2; E3 = e3+e3

2/2+e4
2/2+e5

2/2; E4 = e4+e2e4; E5 = e5+e1e5+e4e6; E6 = 
e6+e2e6;  
       Substituting the experimental crystal lattice parameters for Sr-anorthite 
[32] into the above formulas, we found that the corresponding components of 
the linear and the finite strain tensors are greatly distinguished (Fig. 2). Hence, 
to minimize the error in calculations of the FPT, the finite strain tensor has to 
be applied. 
 For the completeness of the system of equations, it is also necessary to 
describe the dependence of the internal pressure on some thermodynamic 
parameters. In the first approximation, this pressure can be considered as linear 

 
  
Figure 2. Illustration of the differences between the dependences of the components of 
the linear ei (triangles) and finite Ei (circles) strain tensors on the internal pressure and 
the molar content of Ga. The curves were obtained using the unit cell parameters of Sr-
anorthite in [32].  
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function of the cation content. Then the system of equations for the FPT will 
take the form 
                                         
∂G(Em,Pint)/∂Em = 0,  
Pint = αN,                                                                                                        (13) 
 
where G(Em,Pint) is the Gibbs potential, m = 1, 2,...6, α is a linear coefficient, 
N is a molar fraction of the substituting cations. 
       Now let us choose the terms of the free energy expansion so that they gave 
the best fit to the experimental data [32]. Since the component E4 of the finite 
tensor is maximum and breaks the symmetry of a monoclinic crystal, we take 
the expansion of a part of the free energy in the parameter E4 up to the term 
E6

4: F4 = A4E4
2/2 + B4E4

4/4 + C4E4
6/6, where all the coefficients are constants. 

Let us emphasize that we do not state the vanishing of the coefficient A4 at the 
critical value of a thermodynamic parameter as it was done in the Landau 
phenomenological theory. The component E6 of the finite-strain tensor also 
breaks the symmetry, but it is much smaller than E4 in the phase transition 
area, so we take the expansion of a part of the free energy in the parameter E6 
up to the term E4

6: F6 = A6E6
2/2 + B6E6

4/4, where the coefficients A6 and B6 are 
constants, independent of Ca-Sr cation composition. It turned out that it was 
necessary to introduce supplementary terms E4

4, E6
4 and E4

6 into the elastic 
energy to better approximate the experimental data from [32]. It should be 
underlined that these terms are correction ones, not affecting the occurrence of 
a soft mode. In order that the main regularities of the FPT in the analytical 
form be simplified, we have taken only one bilinear term, dropping the 
biquadratic and linear cubic terms when describing the coupling of the 
parameters E4 and E6 with the same symmetry: Fasym = A4-6E4E6. The coupling 
of the non-symmetry-breaking strain components is expressed by an ordinary 
quadratic elastic strain: Fsym = ΣijAijEiEj/2, with the indices i, j  = 1,2,3,5.  
        We have shown above that the soft acoustic mode, causing the proper 
monoclinic-triclinic FPT in anorthite, is mainly due to the “kinematic” 
anharmonicity, which is expressed by the linear-quadratic coupling of the static 
non-symmetry-breaking and the dynamic symmetry-breaking strain components. 
Here we use the same approach, but in this case the static non-symmetry-
breaking strain components are caused by the internal pressure instead of the 
external one. Therefore, to take into account the coupling of the non-symmetry-
breaking as well as the symmetry-breaking strain components, we made use 
only of the linear-quadratic terms: Finter = (ΣjD4jEj)E4

2/2 + (ΣjD6jEj)E6
2/2, with 

the indices j  = 1, 2, 3, 5. For the soft acoustic mode with the propagation 
direction along the crystallographic Y-axis, Finter = ΣjC2jEj(E4

2 + E6
2)/2. Now 

the total free energy is written down as F = F4 + F6 + Fsym + Fasym + Finter. 
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        When solving the system of equations (13), the dependences of the 
spontaneous strain tensor components on the value of the internal pressure are 
determined when the Ca content increases. Four non-symmetry-breaking strain 
components are linearly dependent on the internal pressure:                           
 
Ej = kjPint,                                                                                                       (14) 
  
with the indices j  = 1, 2, 3, 5.  Here the coefficients kj are the linear 
compressibility of a crystal along the Cartesian axes, which can be determined 
by the elements of the compliance matrix S = C-1 as follows: kj = ΣmSjm. 
Substituting Ej in the above-mentioned terms of the linear-quadratic coupling 
yields the coefficients of the quadratic terms E4

2/2 and E6
2/2 in the free-energy 

expansions equal to A4 + ΣjD4jSjPint and A6 + ΣjD6jSjPint. It is  clear that these  
coefficients  fall  to zero at partial critical pressures Pc1 = -A4/ΣjD4jSj and Pc2 = 
-A6/ΣjD6jSj. The symmetry-breaking strain components E4 and E6 are zero at 
the monoclinic phase at Pint < Pc, where Pc is the experimental pressure of the 
phase transition. At the triclinic phase, at Pint ≥ Pc, to a first approximation, the 
analytical expressions for E4 and E6 in the phase transition are the following: 
                      
E4 ≅  -{-B4 /2C4 + [(B4 /2C4)2/4 – L]1/2 }1/2,      
E6 ≅  [-Q +(Q2 + S3)1/2]1/3 +[-Q -(Q2 + S3)1/2]1/3,                                             (15) 
 
where S = (A6 - Pint)/3B6, Q = A4-6E4 /2B6, L = [(A4 - Pint)(A6 - Pint) -                
A4-6

2]/C4(A6 - Pint). A real non-zero solution is possible at L ≤ 0. The phase 
transition pressure at L = 0 is 
 
Pc = (A4 + A6)/2 – [(A4 + A6)2/4 – A4A6 + A4-6

2]1/2.                                        (16) 
 
Here, the critical phase transition pressure is different from the partial critical 
pressures Pc1 and Pc2 due to the coupling of the components E4 and E6. Now 
the elastic constants C44, C46 and C66 can be obtained in the usual way: C44 = 
∂2G/∂E4

2 = A4 - Pint, C46 = ∂2G/∂E4∂E6 = A4-6 and C66 = ∂2G/∂E6
2 = A6 - Pint. It 

is seen that Pc is the solution to the equation C44C66 - C46
2 = 0. As is shown in 

[12], the monoclinic-triclinic phase transition in feldspars is driven by the 
instability associated with the same combination of elastic constants, which 
confirms the validity of our model. 
 For the experimental data Ej (j = 1, 2, 3, 5) presented in Fig. 3, we 
substituted the content of Ca cations along the abscissa for the internal pressure 
in the following manner. In our model, we describe the behaviour of the crystal 
structure with the help of the average internal pressure for the three directions 
along the Cartesian axes Pint = 1/3(Pint1 + Pint2 + Pint3). We equated the theory to 
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the experiment in the extreme right points along the abscissa with the help of 
the following formula: Pint = ΣjCijEj, where j = 1, 2, 3, 5, and i = 1, 2, 3. The 
values of the non-symmetry-breaking strain components Ej were taken from 
Fig.3 for Ca-anorthite, i.e., for N  = 1, and the values of the elastic moduli for 
these points were borrowed from [33]. It has been estimated that the internal 
pressure obtained for x = 1 in CaxSr1-xAl2Si2O8 solid solution is equivalent to 
the mechanical pressure of about 4 GPa. Hence, from the formula Pint = αN, it 
follows that α ≅ 4 GPa. In this case, it is not difficult to calculate Pint for any N. 

 
Figure 3. Comparison of model (solid lines) and experimental (triangles) dependences 
of the strain components tensors from [32] on the internal pressure and the molar 
content of Ca. Here the internal pressure is measured from Sr-phase of the crystal, 
where Pint = 0. 
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 It is interesting to note that the values of the internal and the external 
pressures, at which the FPT occurs, differ by almost one order of magnitude. 
According to our model from equation (16), Pc ≅ 0.43 GPa, and the external 
pressure for this transition is 3.2 GPa [13]. This difference can be conditioned 
by several reasons. The first reason is that it can be caused by the fact that the 
external pressure changes the elastic moduli as a result of anharmonicity of the 
interatomic potentials, while the internal pressure contains the term FxЕ F-1

xx fx 
which acts directly on the chemical bonds and, consequently, changes the 
elastic constants more effectively. Second, as we have mentioned above, that 
the term σind is anisotropic, therefore its approximation by the internal pressure 
is rough and it is appropriate only for the isotropic crystals. Third, the internal 
forces fx can change the phase transition pressure owing to interaction of the 
optical and the acoustic modes FxЕ. 
 
5. Conclusion 
        To conclude, it should be noted that we have obtained an equation, with 
the help of which it appears possible to predict the internal pressure of the 
proper monoclinic-triclinic ferroelastic phase transition if the initial effective 
elastic moduli are known. It is shown that the internal pressure may be 
represented as a driving force for the proper ferroelastic phase transitions 
induced by the cation exchange. It has been found that the internal stress 
tensor, generated by the cation exchange, is of a more complicated nature than 
the tensor of the external stress. This difference comes from a specific 
coupling of the substituting cations with local, microscopic displacements of 
the neighbouring atoms inside the unit cell. Thus, it becomes evident why in a 
number of experiments a significant difference in the action of the internal and 
the external pressures on the crystal structure is observed and, also, why the 
internal pressure causes a greater anisotropy than the external one.  
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