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Abstract: It is shown that softening the acoustic mode, which brings about the occurrence of a proper ferroelastic phase 
transition in some crystals, is substantially due to the "kinematic" anharmonicity. The latter arises at the transition from the 
natural curvilinear coordinates of interatomic separation to the Cartesian atomic displacements. It is shown that the internal 
pressure may be represented as driving force for a proper ferroelastic phase transition induced by cation exchange. It has been 
found that the internal stress tensor, generated by the cation exchange, is of a more complicated nature than the tensor of the 
external stress. This difference comes from a specific coupling of the substituting cations with local, microscopic displacements 
of the neighbouring atoms inside the unit cell. It becomes evident why in a number of experiments a significant difference in the 
action of internal and external pressures on the crystal structure is observed and, also, why the internal pressure causes the 
greater anisotropy than the external one. We have obtained an equation for the crystals, in which the softening of the acoustic 
modes is caused only by the kinematic anharmonicity, with whose help we can predict either the external pressure of the 
ferroelastic phase transition to a triclinic phase if the initial elastic moduli are known or the internal pressure induced by cation 
exchange for the isotropic case. 
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1. Introduction 

Ferroelastics are widely applied in acoustooptic and acou-
stoelectric devices. In addition, the basic features of
ferroelastics, such as mechanical twinning, are observed
in high temperature superconductors. Nevertheless, there
is still some vagueness in the nature of ferroelastic phase
transitions (FPTs). Currently a number of molecular-
dynamics simulations and lattice-dynamics calculations of
the soft modes, causing FPTs in crystals, have been made
(see, for example, Dove & Redfern, 1997, or Watson &
Parker, 1995). The analytical equations describing the 
mechanism of occurrence of the soft mode are absent in
these simulations. It is believed that the symmetry-
breaking strain arises spontaneously without any force
being applied, occurring as a result of criticality in the
elastic moduli.When studying the FPT according to the
Landau theory, the free-energy ex-pansion in terms of the
critical parameter, breaking the crystal symmetry, is done.
Thereafter it is postulated that the coefficient of the
quadratic term of such an expansion falls to zero at the
critical value of the external variable parameter. Thus, 
within this phenomenological approach, the mechanism
causing the occurrence of the soft mode remains unclear. 
To understand this mechanism it is necessary to use a 
microscopic model, which is developed in the present
work. As an example, which illustrates this model, we
consider the proper monoclinic-triclinic FPT in Sr-anor-
thite (Sr,Ca)Al2Si2O8. The physics of proper FPTs at high

pressures is of particular interest, when the crystal 
symmetry is reduced to the triclinic structure with 
subsequent amorphization. The occurrence of the 
latter has been demonstrated with anorthite and quartz 
(e.g. Redfern, 1996, and Ovsyuk & Goryainov, 1999, 
respectively). We have selected this compound, 
because there is a complete set of experimental data 
for it, namely, the experimental values of elastic 
constants, the experimental value of pressure for this 
transition, and the type of symmetry at transition. We 
consider a proper FPT, because the coupling 
mechanism of the edge and the angle deformations of 
the unit cell appears more evident. This is due to the 
fact that we can consider deformation of the entire 
unit cell, omitting displacements of individual atoms, 
as this takes place with improper phase transition with 
participation of microparameters. In the present work 
we try to clarify the most general reason for elastic 
instability of a crystal in the symmetric phase at the 
proper FPT. On the basis of the analysis made, using 
the "ball-and-perfect springs" model according to 
Mirgorodsky & Smirnov (1994), we come to the 
conclusion, that the basic mechanism causing a proper 
FPT in some crystals is the "kinematic" 
anharmonicity (Ovsyuk & Goryainov, 2002). It is 
shown that even in the expression for the free energy, 
when only the terms containing linear elastic moduli 
are taken into account, it is possible to obtain 
anharmonic terms by conserving the quadratic terms 
in the expression of the strains as functions of the 
space derivatives of the displacements. The above 
anharmonic terms are expressed by linear-quadratic 
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coupling between the non-symmetry-breaking strain 
components and the symmetry-breaking strain com-
ponents. So far the softening of the acoustic mode at the 
proper FPT at the expense of this coupling has not been 
described. For example, Pouget (1991, 1993) uses the 
terms of third and fourth orders when expanding the free 
energy in the non-symmetry-breaking strain components. 
In contrast to the present work, the above-mentioned 
components do not cause changes in the crystal symmetry 
but give rise to the formation of modulated-strain 
structures. Cowley (1976) uses the terms of second and 
fourth orders in the expansion of the free energy, but does 
not consider the linear-quadratic coupling between the 
static strains and acoustic waves which form a part of the 
cubic anharmonicity. Anderson & Blount (1965) have 
considered the cubic term in the free-energy expansion in 
terms of the symmetry-breaking strain components, which 
are equal to zero in the symmetric phase for a 
nondegenerate order parameter. And in our work, the 
cubic term, i.e. the linear-quadratic coupling between the 
parameters of different symmetry, results in softening the 
acoustic mode even in the symmetric phase. Thus, this 
term, as opposed to the above-mentioned work, is not 
equal to zero in the symmetric phase. 
     It should be recalled that, generally, non-symmetry-
breaking and symmetry-breaking order parameters are 
represented as sum of static and dynamic parts: Qi = Qistat 
+ Qidyn. The static symmetry-breaking order parameters 
Qistat describe a system in the thermodynamic equilibrium 
and they are equal to zero in the high-symmetry phase. In 
the considered case, the dynamic symmetry-breaking order 
parameters Qidyn, are caused by the acoustic lattice 
vibrations with the wave number q and the frequency ω(q) 
and they are present both in the high-symmetry and the 
low-symmetry phases. As the phase transition point is 
approached, the acoustic vibrations with the wave number 
qy and the frequency ω(qy) become softer. For the 
monoclinic-triclinic transition in anorthites, the change in 
the point group is 2/m ⇄⎯1, for which the active represen-
tation is Bg. The stability condition with respect to this 

transition is given by the eigenvalue Bg of the symmetry-
adapted dynamic matrix and is of the form: (C44C66 – 
C2

46) > 0. The dynamic matrix yields the soft acoustic 
mode with the propagation direction along Y axis and 
with the polarization [-C46/C66,0,1] (Salje, 1993). The 
origin of anharmonicity and destabilization of a crystal is 
disguised in the dynamic matrix, as it is the product of the 
elastic-constant matrix and the kinematic coefficients 
matrix, which are responsible for the behaviour of normal 
modes of a crystal. As each of these matrices can serve as 
a source of anharmonicity, let us first consider the 
anharmonicity connected only with elastic-constant 
matrix. This "proper" anharmonicity generally leads to an 
increase in elastic constants with pressure and, 
consequently, to a decrease in the amplitude of the 
symmetry-breaking transverse acoustic vibrations. Hence, 
the proper anharmonicity brings about an increase in the 
structure stability, and this cannot be related to the 
appearance of instability. 
 
2. Role of kinematic anharmonicity for the  
structural phase transitions 
 
Let us now consider the anharmonicity connected only 
with the kinematic coefficients matrix. We assume and 
further this will be shown that the kinematic coefficients 
matrix, expressing the transition from the natural 
curvilinear q coordinates of interatomic separation to the 
Cartesian atomic displacements can result in an induced 
linear-quadratic coupling between the normal modes of 
different symmetry. The introduction of the curvilinear 
internal valence coordinates describing of molecular 
vibrations with the help of the displacements of bond dis-
tances and valence angles, reduces the number of 
dynamic potential parameters by inclusion of the 
kinematic anharmonic effects directly in the description 
of molecular vibrations. Let us illustrate this "kinematic" 
mechanism of occurrence of anharmonicity resulting in 
the softening of the optical vibrations at the improper 
phase transition in the triatomic molecule T-O-T. In 

                              (a)                                                                  (b) 

                                           
 
 Fig. 1 . A schematic illustration of phase transitions under the effect of the hydrostatic pressure P and the transverse optical wave 
(the soft optical mode)  for the triatomic  T-O-T  molecule and the transverse acoustic wave (the soft acoustic mode) for a 
monoclinic unit cell (a) before and (b) after phase transition. 
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 Fig.1, the solid lines correspond to the static states of atoms 
in the thermodynamic equilibrium; the dashed lines 
correspond to the transverse optical vibrations of the O 
atom. If the molecule is contracted, the forces Fr  (bond 
tensions) will arise. The sum of these forces gives the 
transverse force Ft which causes the linear-bend phase 
transition [see Fig. 1(b)], when Fr > Fa, where Fa is a 
restoring force, which is determined by the stiffness of the 
T-O-T angle. When verifying the model, the authors 
Mirgorodsky & Smirnov (1994) found out that in some 
crystals the kinematic anharmonicity completely describes 
soft optical modes at the improper phase transition. When 
analyzing the monoclinic-triclinic FPT we use similar 
reasonings for the soft acoustic modes, which have a 
number of essential differences from the optical modes. 
First, the frequency of the optical vibrations poorly depends 
on a wave vector, and the frequency of acoustic modes 
linearly depends on a wave vector and approaches zero at k 
= 0, therefore dynamic matrices for these vibrations should 
differ. In addition, the volume of a unit cell does not vary 
for the optical modes at vibrations and under pressure, 
while it varies for the longitudinal acoustic modes, which 
can result in supplementary anharmonicity. Examination of 
the coupling between the acoustic modes is more 
complicated, since they occur from changes in the 
deformation tensor, while the optical modes, occurring 
from changes in the relative coordinates of atoms, are the 
vibrations having vector character. So, by analogy with the 
triatomic molecule, let us trace the occurrence of the 
transverse unstable forces which cause the monoclinic-
triclinic FPT. We expect that when the hydrostatic pressure 
is applied to a unit cell, the symmetry-breaking 
destabilizing forces also occur due to the effect of stressed 
interatomic bonds. Let us consider a monoclinic unit-cell 
with a plane of symmetry with the normal oriented along Y 
axis (see Fig. 1). Let us take the quadratic expansion of the 
free deformation energy of this cell in the natural 
curvilinear internal valence q coordinates (∆ri, ∆ϕk ): 
 
F = ∑ijC0

ij(∆ri/r0i)(∆rj/r0j)/2 + ∑klC0
kl∆ϕk∆ϕl/2  

       + ∑ikC0
ik(∆ri/r0i)∆ϕk                                                      (1) 

 
where i, j = 1, 2, 3; k, l = 4, 5, 6; C0

ij, C0
kl are the initial 

elastic moduli for the high-symmetry phase; ∆ri and ∆ϕk are 
the displacements of bond distances and valence angles from 
equilibrium values; r°ti are the lattice parameters prior to de-
formation. Note that we consider the quadratic expansion of 
the free energy in equation (1), assuming the contribution 
of the next cubic term of expansion to be insignificant, i.e. 
we use the "perfect springs" model and hence the 
anharmonicity connected with a change of the elastic 
constants of interatomic bonds is not taken into account. 
For simplicity, we consider the two-dimensional distortion of 
the side b0c0 of the unit cell. This distortion includes the 
compression strains of the edges b0, c0, and the shear strain α. 
It is seen from Fig. 1(b) that for small deformations ∆α = 
∆z/b0, where b0 is the lattice parameter along the Y axis prior 
to deformation. Now the quadratic expansion of free energy 
is written down as  
 
F = C0

22(∆b/b0)2/2 + C0
23(∆b/b0)(∆C /C0)/2  

       + C0
33(∆C/C0)2/2 + C0

44(∆z/b0)2/2.                               (2) 

Now let us present this energy in terms of the Cartesian 
atomic displacements. As far as the edge b0 deviates in the Z 
direction  under the effect of the acoustic wave, the 
expansion of  the ∆b may be written as 
 
∆b = [(b0 + ∆y)2 + (∆z)2]1/2 – b0 ≅ ∆y + (∆z)2/2b0.            (3) 
 
It is seen that ∆b involves both the linear components along 
Y axis and the quadratic components along the 
perpendicular Z axis. That is just a result of the action of the 
kinematic matrix and nonlinear transformation from the 
natural q coordinates to the Cartesian coordinates. 
Physically, this means that the linear strains in the 
curvilinear q space of interatomic separation would provide 
nonlinear strains in the rectangular x space, in which atomic 
displacements are considered.  As a result, we obtain that 
the expansion in equation (3) may be written down as ∆b/b0 
= e2+e4

2/2, as in the monoclinic cell ∆ϕ4 = ∆α = - e4. As a 
result we obtain the following expression for the Gibbs 
energy 
 
G = F + pextV ≅ C0

22e2
2/2 + C0

23e2e3 + C0
33e3

2/2  
       + (C0

22e2 + C0
23e3 + C0

44)e4
2/2 + Pext(e2 + e3).           (4)   

                                     
From this equation it follows that the static non-symmetry-
breaking strain components e2stat and e3stat enter the linear-
quadratic coupling with symmetry-breaking strain 
component e4dyn, causing the change of force constants of 
transverse vibrations. Hence the elastic modulus for the 
deformation, which breaks the crystal symmetry so that ϕ4 
≠ 900, may be written down as 
 
C44 = ∂2G/∂e4

2 = b0
2∂2F/∂z2 = C0

44 + C0
22e2 +C0

23e3.       (5) 
 
In equilibrium, for high-symmetric phase it follows that 
∂G/∂e2 = C0

22e2 +C0
23e3 + Pext = 0.  Hence 

 
 C44 = C0

44 - Pext.                                                                 (6) 
 
It is seen that the elastic modulus C44 is softened with an 
increase in pressure and  becomes zero, i.e., the acoustic 
instability arises at the critical pressure: 
 
Pc = C0

44.                                                                           (7) 
 
Thus in our model the coupling between the acoustic modes 
of different symmetry which equals “-Pext” linearly grows 
in absolute magnitude with pressure and cannot be 
neglected as it was done in the recent review by Carpenter 
& Salje (1998). As mentioned above, the amplitude vector 
components are present both along the Z and X axes in the 
soft acoustic mode. Therefore the second symmetry-
breaking parameter e6, which is also softened with 
increasing pressure, is to be introduced into equation (4) to 
obtain a more accurate quantitative estimation. As the edge 
b0 declines in X and Z directions under the effect of the 
acoustic wave, the expansion ∆b will have the following 
form: 
 
∆b/b0 ≅ ∆y/b0 +(∆x)2/2b2

0 +(∆z)2/2b2
0  

          = e2 + e4
2/2 + e6

2/2.                                                  (8) 
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As the tensor components e4 and e6 interact, a combination of 
the moduli C44C66 - C46

2 tends to zero faster than a separate 
modulus C44. In this case, after substitution of  expansion (8) 
into the Gibbs potential, we obtain: C44C66 - C46

2 = (C0
44 –

Pext)(C 0
66 –Pext) - C0

46
2 = 0 at the transition point. Hence           

 
Pc = (C0

44 + C0
66)/2 – 

 [(C0
44 + C0

66)2 /4 - C0
44C0

66 + C0
46

2]1/2.                               (9) 
 
Using the data C0

44 = 11.5 GPa, C0
66 = 24.6 GPa, C0

46 = -12.9 
GPa, for the initial moduli of Sr-anorthite from Dove & 
Redfern (1997), we have Pc = 3.6 GPa, and the experimental 
pressure from McGuinn & Redfern (1994b) for this 
transition is (3.2 ± 0.4) GPa. When deriving equation (9) we 
used the perfect springs model, where the kinematic 
anharmonicity can arise as the result of the transition from 
natural curvilinear atomic q coordinates (interatomic bonds 
and angles between them) to Cartesian coordinates of the 
atomic displacements. Therefore the coincidence between 
equation (9) and experiment has appeared to be unexpected, 
since this means that predominantly kinematic anharmonicity 
brings about a decrease of the sound velocity with pressure, 
when all other anharmonicities are neglected, i.e., thus 
leading to instability of the anorthite crystal lattice. It turned 
out that berlinite AlPO4 [Pc ≈15 GPa according to Gillet et 
al., (1995)], quartz SiO2  [Pc ≈ 22 GPa according to Gregory-
anz et al., (2000)], and natrolite Na16[Al16Si24O80]⋅16H2O [pc 
≈ 3 GPa according to Goryainov & Smirnov, (2001)] behave 
like anorthite at transition from different symmetry phases to 
the triclinic one. The experimental pressures of the 
transitions, shown in the brackets, approximately coincide 
with the pressures obtained from equation (9). The above-
indicated crystals as well as anorthite have the elastic 
stability condition (C44C66 –C2

46) > 0 with respect to the tran-
sition to the triclinic phase. We cannot check up equation (9) 
for other crystals because of the absence of a complete set of 
experimental data, namely, the experimental values of elastic 
constants, the experimental value of pressure for the phase 
transition and the type of symmetry at transition. However, 
we believe that it is possible to obtain similar equations for 
the FPT in other crystals if we use combinations of the 
elastic moduli, expressing the elastic stability conditions 
given in Cowley (1976) to be appropriate for the transitions 
in these crystals as well as the mechanism of the softening of 
the shift moduli considered in the present work. This 
mechanism is based on the fact that each shift modulus 
linearly falls with pressure, which is in line with the kinema-
tic anharmonicity. 
 
3. Difference of the action of the external and  
the internal pressures on the crystal structure 
 
 Now we consider the proper monoclinic-triclinic FPT in Sr-
anorthite induced by Ca and Sr cation exchange rather than 
by the external pressure, as it was described above. In other 
words, the same approach is used for the case of the internal 
(chemical) pressure. Owing to the fact that the Ca2+ radius is 
smaller than the Sr2+ ionic radius, the effective radius of the 
A-site decreases with increasing Ca content, thus enhances 

the internal strain in the crystal. We believe that this 
“chemical” tension of the interatomic bonds is most 
convenient to use as thermodynamic parameter of the Gibbs 
potential instead of a usual cation content, because a correct 
physical description of the FPT requires a consideration of 
both the atomic displacements and the forces which cause 
them. We will try to show the validity of the introduction of  
internal (chemical) pressure into the Gibbs potential as the 
driving force for the proper FPT, because the internal 
pressure is interpreted by many scientists as an imaginary, 
unreal and unobservable value. 
    Based on papers (Ulyanov et al., 2001; Radaelli et al., 
1997; Marezio et al., 2000a; Moron et al., 1996; Marezio et 
al., 2000b; Itoh et al., 2001; Licci et al., 1998; Huang et al., 
1998), which deal with the internal pressure in crystals, it 
follows that the internal pressure is a real value which is ca-
pable of going into action differing from the external pres-
sure. For example, according Ulyanov et al. (2001) con-
clude that the “chemical” pressure is a more complicated 
parameter than the mechanical one. Various types of the 
“chemical” pressure can lead to the Pbnm-R⎯3c phase tran-
sition in manganites with different signs of cell volume 
change. According to Radaelli et al. (1997), the authors find 
an unexpected minimum of Mn-O bond lengths in manga-
nites as a function of cation radius and connect it with the 
reversal of sign of the internal pressure. This reversal of 
sign of the internal pressure could, in fact, be a common 
effect in perovskites, which deserves to be explored in other 
materials as well. They advocate that application of the 
external pressure on these compounds produces quite 
different structural effects than the ''internal'' pressure. In 
Marezio et al. (2000a), the authors believe the application 
of the mechanical pressure to copper-oxide superconductors 
to induce an increase in Curie temperature Tc. If the 
mechanical pressure is replaced by a chemical one, the 
effect becomes negative and a decrease of Tc is observed. In 
addition, it was observed that the chemical pressure 
anisotropy is greater than the mechanical one. To sum up, 
we can say that, first, the experiments show that the internal 
pressure brings about a greater anisotropy. And, second, at 
the present time, the cause of the fact that the internal and 
the external pressures in anisotropic materials are not 
similar parameters, is poorly understood. 
    Let us discuss how to describe the difference of the 
action of the external Pext and the internal Pint pressures on 
the crystal structure and why the internal pressure is a more 
complicated parameter, bringing about a greater anisotropy. 
Let us dwell on the crystal compressed by the hydrostatic 
pressure Pext. A complete description of  the geometrical 
structure of a lattice is given by 6 independent parameters 
determining a primitive cell (three lengths of the translation 
vectors and three corners between them) and by 3n 
coordinates of the atoms in the cell (n is the number of 
atoms in a primitive cell). The basis of the internal 
deformations is determined by a set of atomic Cartesian 
displacements x, identical in all primitive cells, i.e. by the 
shifts of the absolutely rigid reciprocal Bravais sublattices. 
It is clear that from 3n internal deformations only (3n - 3) 
are linear-independent deformations, and 3 correspond to 
translations of the crystal as a whole. The external 
deformations are determined by a 6-dimensional basis,  
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which is given by the deformation tensor Eij of second rank, 
with diagonal elements describing relative changes of the 
linear sizes of a crystal along the Cartesian axes, and non-
diagonal elements describing the shear deformations (Born & 
Huang, 1954). The absolute Cartesian coordinates of the 
atomic displacement X are clearly related to the deformation 
tensor of a primitive cell E and to the change of the atomic 
coordinate x inside the primitive cell relative to the chosen 
centre of masses with the coordinates R by the following 
correlation: X = x + ER. The change of the density of the 
Gibbs free energy as function of x and E is written down in 
quadratic approximation as 
 
G(x,E) = -fx x – fE E + xFxxx/2+ xFxEE + E FEE E/2,       (10) 
 
where we use the tensor notation for derivatives fx = - ∂G/∂x,  
fE = - ∂G/∂E,  Fxx = ∂2G/∂x ∂x,  FxE = ∂2G/∂x ∂E,  FEE = 
∂2G/∂E ∂E, initially taken at x = 0, Е = 0.  
    In equilibrium a crystal should satisfy the following con-
ditions: 1) the internal resulting forces on any atom be equal 
to fx = 0;  2) the external forces, acting on a unit cell are fЕ  = 
(σext)ij = -Рextδij,  because the hydrostatic pressure corre-
sponds to the diagonal stress tensor, which has equal com-
ponents σii = -Pext for isotropic crystals; 3) in equilibrium, 
the Gibbs potential has a minimum relative to the internal 
atomic displacements x and  the deformations Е: Fxx x+FxE E 
= 0, FxE x + FEE E + Pextδij = 0. Taking into account these 
equilibrium conditions, the Gibbs potential can be reduced to 
the form: G(E)= Pext V + E C E/2, where F = E C E/2 is a 
free energy in quadratic approximation, V ≈ E11 + E22 + E33 is 
a relative change of the volume of a unit cell and the matrix 
of elastic constants C is determined as 
 
C = FEE - FxE F-1

xx FxE                                                       (11) 
 
It is seen that these elastic moduli are of a complex origin 
(see also Mirgorodsky et al. (1995) and Cousins (2001)) 
because the first term on the right-hand side of equation (11) 
is a contribution of the external deformations, and the second 
term is a contribution of the internal deformations. It is 
evident from this equation that just the second term, which is 
connected with the optical-acoustic coupling FxE, determines 
the ferroelastic instability. 
    Now, we can consider the origin of the internal pressure in 
the process of the cation exchange. In this case, the intro-
duction of the new ions generally produces an overall cell 
deformation E as well as a change in local atoms coordinates 
x. Two tensors correspond to these two kinds of the deforma-
tions: σdir (direct) - the mechanical stress tensor, directly 
affectting the lattice parameters due to the change in radii of 
nodal atoms in the lattice in the process of the cation exc-
hange, and σind (indirect) - the mechanical stress tensor, indi-
recttly affecting the lattice parameters due to the change in 
radii of non-nodal atoms inside a unit cell. Thus, the comp-
lete tensor of the internal stress is equal to σint =  σdir  + σind. 
In this case, the forces, responsible for the direct coupling 
with lattice parameters, are fЕ  = (σdir)ij = -Рdirδij and, also, the 
internal resulting forces on atoms, responsible for the indirect 
coupling with lattice parameters, are fx = - ∂G/∂x. We 
emphasize that fx ≠ 0 only when these forces act on the atoms 
at sites lacking inversion symmetry (Cousins, 2001). In 

equilibrium, the Gibbs potential has a minimum relative to 
the internal atomic displacements x and the deformations E: 
Fxx x + FxЕ Е - fx = 0, FxЕ x + FЕЕ Е - σdir = 0.  The solution 
to this system of equations is the following: 
 
x = F-1

xx(1+ FxЕ C-1FxЕ
 F-1

xx
 ) fx + F-1

xx
 FxЕ C-1σdir,  

E=-C-1FxЕ
 F-1

xx
 fx – C-1σdir = -C-1(σind + σdir)= -C-1σint    (12) 

 
where  σind = - FxE F-1

xx fx and C  is determined by equation 
(11). 
     It is clear that the tensor σint, generated by the cation ex-
change, is of a more complicated nature than the tensor of 
the external stress, because not only the term which is 
similar to the external pressure, but also the anisotropic 
term σind is present. This difference comes from a specific 
coupling of the substituting cations with local, microscopic 
displacements of the neighbouring atoms inside the unit 
cell. Thus, the macroscopic strain is partly a secondary 
effect of the cation exchange, whereas it is a primary effect 
of an external stress. In the first approximation, this internal 
stress can be expressed in terms of the isotropic internal 
pressure (σint)ij = -Рintδij. It is seen from equation (12) that 
the term σind is anisotropic, therefore its approximation by 
the internal pressure is rough and it is appropriate only for 
the isotropic crystals. Also, this approximation is possible 
due to the presence of spherically symmetrical cations in 
the cation exchange making all relevant forces spherically 
symmetrical or isotropic (assuming a disordered cation 
arrangement). Spontaneous strain, caused by internal 
isotropic pressure, can be anisotropic because of the 
anisotropy of elastic constants. Now it is possible to give 
the following definition of the internal pressure: “internal 
pressure due to the concentration N of new ions is equal 
to such an external pressure which at the presence of 
additional forces on atoms fx would result in the same 
macroscopic deformation as does the concentration N”. 
     We believe that the internal pressure can be experiment-
tally measured. In Gibson & Chernuschenko (1999) and 
Wen et al. (1996), the authors declare that Cr3+ containing 
crystals have been extensively used to measure temperature 
and pressure, since Cr3+ ions exhibit the strong luminescent 
lines of R1 and R2. The origin of the R fluorescence lines is 
a radiative decay of excited d3 electrons of substitutional 
Cr3+ ions. The ions are in octahedral coordination with the 
oxygen ions in the corundum structure. When the octahed-
ral arrangement is strained, the crystal field at Cr3+ ions 
alters, and consequently the frequency of R lines changes. 
This is the basis for high-pressure measurements in 
diamond-anvil cells and for the measurement of stresses in 
ce-ramics and composites (Ma & Clarke, 1993). We expect 
that if we manage to introduce Cr-ions into the solid 
solutions of  (Sr,Ca)Al2Si2O8 with different content of 
substituti-ng cations, then we will be able to measure the 
value of the internal pressure due to the cation exchange by 
the shifts of the luminescent lines R1 and R2 in the spectra of 
each sample. 
 
4. Comparison of model and experimental  
dependences  
 
     Hereinafter we are going to study the Gibbs potential for 
Sr-anorthite, using for simplicity the internal pressure  
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Fig. 2. Differences between the dependences of the components of the linear ei (triangles) and finite Ei (circles) strain tensors on the 
internal pressure  and  the molar  content of Ca.  The  curves were obtained using the unit cell  parameters of  Sr-anorthite in 
McGuinn & Redfern (1994a). 
 
approximation: G(E)= PintV+E C E/2. The linear Lagrangian 
strain tensor of the form eij=(1/2)(∂ui/∂x0j+∂uj/∂x0i) is 
commonly used to describe the FPT. As in the process of the 
phase transition, spontaneous deformation increases, it may 
appear that non-linear terms should be taken into account in 
the strain tensor. This tensor is called finite and defined as Eij 
= (1/2)[(∂ui/∂x0j + ∂uj/∂x0i) + ∑k(∂uk/∂x0i)(∂uk/∂x0j)], where 
the vector u = x-x0 determines displacements of a point, 
located at x0 prior to deformation and at x after the 
deformation. The indices i,j,k correspond to Cartesian 
coordinates, each of them running from 1 to 3. For the sake 
of convenience of comparison with experiment, we shall 
express the components of the strain tensor in terms of the 
crystal lattice parameters. The corresponding expressions for 
the components of the linear strain tensor in the explicit form 
are obtained in Schlenker et al., (1978). We have obtained 
the relations for the components of the finite strain tensor, 
which can be expressed in terms of the components eij in the 
Voigt notations with the unique b axis in the following form: 
E1 = e1+e1

2/2+e6
2/2; E2 = e2+e2

2/2; E3 = e3+e3
2/2+e4

2/2+e5
2/2; 

E4 = e4+e2e4; E5 = e5+e1e5+e4e6; E6 = e6+e2e6;  
    Substituting the experimental crystal lattice parameters for 
Sr-anorthite (McGuinn & Redfern, 1994a) into the above 
formulas, we found that the corresponding components of the 
linear and the finite strain tensors are greatly distinguished 
(Fig. 2). Hence, to minimize the error in calculations of the 
FPT, the finite strain tensor has to be applied. 
    For the completeness of the system of equations, it is also 
necessary to describe the dependence of the internal pressure 
on some thermodynamic parameters. In the first approxi-
mation, this pressure can be considered as linear function of 
the cation content. Then the system of equations for the FPT 
will take the form 
 
∂G(Em,Pint)/∂Em = 0, 
Pint=αN,                                                                            13) 
 

where G(Em,Pint) is the Gibbs potential, m = 1, 2,...6, α is a 
linear coefficient, N is the molar fraction of the substituting 
cations. 
    Now let us choose the terms of the free energy expansion  
so that they gave the best fit to the experimental data 
(McGuinn & Redfern, 1994a). Since the component E4 of 
the finite tensor is maximum and breaks the symmetry of a 
monoclinic crystal, we take the expansion of a part of the 
free energy in the parameter E4 up to the term E6

4: F4 = 
A4E4

2/2 + B4E4
4/4 + C4E4

6/6, where all the coefficients are 
constants. Let us emphasize that we do not state the 
vanishing of the coefficient A4 at the critical value of a 
thermodynamic parameter as it was done in the Landau 
phenomenological theory. The component E6 of the finite-
strain tensor also breaks the symmetry, but it is much 
smaller than E4 in the phase transition area, so we take the 
expansion of a part of the free energy in the parameter E6 
up to the term E4

6: F6 = A6E6
2/2 + B6E6

4/4, where the 
coefficients A6 and B6 are constants, independent of Ca/Sr 
ratio. It turned out that it was necessary to introduce 
supplementary terms E4

4, E6
4 and E4

6 into the elastic energy 
to better approximate the experimental data from McGuinn 
& Redfern (1994a). It should be underlined that these terms 
are correction ones, not affecting the occurrence of a soft 
mode. In order that the main regularities of the FPT in the 
analytical form be simplified, we have taken only one 
bilinear term, dropping the biquadratic and linear cubic 
terms when describing the coupling of the parameters E4 
and E6 with the same symmetry: Fasym = A4-6E4E6. The 
coupling of the non-symmetry-breaking strain components  
is expressed by an ordinary quadratic elastic strain: Fsym = 
∑ijAijEiEj/2, with the indices i, j  = 1,2,3,5.  
        We have shown above that the soft acoustic mode, 
causing the proper monoclinic-triclinic FPT in anorthite, is 
mainly due to the “kinematic” anharmonicity, which is 
expressed by the linear-quadratic coupling of the static non- 
symmetry-breaking and the dynamic symmetry-breaking 
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Fig. 3. Comparison of dependences of model  (solid lines) and experimental  (triangles) components of the strain  tensors from 
McGuinn & Redfern (1994a) on the internal pressure and the molar content of Ca. Here the internal pressure is measured from  
Sr-phase of the crystal, where Pint = 0. 
 
strain components. Here we use the same approach, but in 
this case the static non-symmetry-breaking strain compo-
nents are caused by the internal pressure instead of the 
external one. Therefore, to take into account the coupling of 
the non-symmetry-breaking as well as the symmetry-
breaking strain components, we made use of the linear-
quadratic terms only: Finter = (∑jD4jEj)E4

2/2 + (∑jD6jEj)E6
2/2, 

with the indices j  = 1, 2, 3, 5. For the soft acoustic mode 
with the propagation direction along the crystallographic Y-
axis, Finter =  ∑jC2jEj(E4

2 + E6
2)/2. Now the total free energy 

is written down as F = F4 + F6 + Fsym + Fasym + Finter. 
        When solving the system of equations (13), the 
dependences of the spontaneous strain tensor components on 
the value of the internal pressure are determined when the Ca 
content increases. Four non-symmetry-breaking strain 
components are linearly dependent on the internal pressure:      
                
Ej = kjPint,                                                                       (14) 
 
with the indices j  = 1, 2, 3, 5.  Here the coefficients kj are the 
linear compressibility of a crystal along the Cartesian axes,  
which can be determined by the elements of the com-pliance 
matrix S =C -1 as follows: kj = ∑mSjm. Substituting Ej in the 
above-mentioned terms of the linear-quadratic coupling 
yields the coefficients of the quadratic terms E4

2/2 and E6
2/2 

in the free-energy expansions equal to A4 + ∑jD4jSjPint 

and A6 + ∑jD6jSjPint. It is  clear that these  coefficients  fall 
to zero at partial critical pressures Pc1 = -A4/∑jD4jSj and Pc2  

= -A6/∑jD6jSj. The symmetry-breaking strain components 
E4 and E6 are zero at the monoclinic phase at Pint < Pc, 
where Pc is the experimental pressure of the phase 
transition. At the triclinic phase, at Pint  ≥ Pc, to a first 
approximation, the analytical expressions for E4 and E6 in 
the phase transition are the following: 
 
E4 ≅ -{-B4 /2C4 + [(B4 /2C4)2/4 – L]1/2 }1/2,      
E6 ≅  [-Q +(Q2 + S3)1/2]1/3 +[-Q -(Q2 + S3)1/2]1/3,                (15) 
 
where S = (A6 - Pint)/3B6, Q = A4-6E4 /2B6, L = [(A4 - Pint)(A6 - 
Pint) - A4-6

2]/C4(A6 - Pint).  
A real non-zero solution is possible at L ≤ 0. The phase 
transition pressure at L = 0 is 
 
Pc = (A4 + A6)/2 – [(A4 + A6)2/4 – A4A6 + A4-6

2]1/2.            (16) 
 
Here, the critical phase transition pressure is different from 
the partial critical pressures Pc1 and Pc2 due to the coupling 
of the components E4 and E6. Now the elastic constants C44, 
C46 and C66 can be obtained in the usual way: C44 =  
∂2G/∂E4

2 = A4 - Pint, C46 = ∂2G/∂E4∂E6  =  A4-6 and C66  =  
∂2G/∂E6

2 = A6 - Pint. It is seen that Pc is the solution to the 
equation C44C66 - C46

2 = 0. As is shown in Carpenter &  
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