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The southern Central Asian Orogenic Belt (CAOB) is characterized by multiple and linear accretionary orogenic
collages, including Paleozoic arcs, ophiolites, and accretionaywedges. A complex history of subduction–accretion
processes makes it difficult to distinguish the origin of these various terranes and reconstruct the tectonic
evolution of the southern CAOB. In order to provide constraints on the accretionary history, we analyzed major
and trace element compositions of Paleozoic graywackes from the Huangcaopo Group (HG) and Kubusu Group
(KG) in East Junggar. TheHGgraywackes have relatively lowChemical Indexof Alteration (CIA) values (50 to 66),
suggesting a source that underwent relatively weak chemical weathering. The identical average Index of
Compositional Variability (ICV)values (~1.1) for both theKGandHGsamples point to an immature source for the
Paleozoic graywackes in East Junggar, which is consistent with an andesitic–felsic igneous source characterized
by low La/Th ratios and relatively high Hf contents. These graywackes are geochemically similar to continental
island arc sediments and therefore were probably deposited at an active continental margin. U–Pb dating of
detrital zircons from the lower subgroup of the HG yielded a young age peak at ~440 Ma, indicating a post-Early
Silurian depositional age. However, the youngest populations of detrital zircons from the KG graywackes and the
upper subgroup of the HG yielded 206Pb/238U ages of ~346 Ma and ~355 Ma, respectively, which suggest a post-
Early Carboniferous depositional age. Because of similarities of rock assemblages, these two units should be
incorporated into the Early Carboniferous Nanmingshui Formation. The detrital zircon age spectrum of the Early
Paleozoic HG graywackes resembles that of the Habahe sediments in the Chinese Altai, which suggests that the
ocean between East Junggar and the Chinese Altai was closed before the deposition of the sediments and that the
Armantai ophiolite was emplaced prior to the Early Devonian. The differences in age spectra for detrital zircons
fromthepost-EarlyCarboniferous graywackes inEast Junggar and theHarlik arc indicate that the emplacement of
the Kalamaili ophiolite postdates the Early Carboniferous. Therefore, a long-lasting northward subduction–
accretion process is suggested for the formation of East Junggar and the reconstruction of the Early Paleozoic
evolution of the southern CAOB.

© 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Central Asian Orogenic Belt (CAOB), also termed the Altaids, is
a large accretionary orogenic belt bounded by the Siberian Craton to
the north and the Tarim–North China Craton to the south (Fig. 1, inset
A; Şengör et al., 1993). This orogenic belt was formed by Early
Neoproterozoic to Late Paleozoic subduction–accretion processes,
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which resulted in accretion of island arcs, ophiolites, other supra-
subduction units, and terraneswith Precambrian crystalline basement
to the southern margin of the Siberian Craton (Şengör and Natal'in,
1996; Buslov et al. 2001; Badarch et al. 2002; Khain et al. 2002, 2003;
Xiao et al. 2003, 2009, 2010; Dobretsov et al., 2004; Safonova et al.,
2004; Yakubchuk, 2004; Helo et al., 2006; Kröner et al., 2007;Windley
et al., 2007). The geodynamic affinities of these various terranes are
critical to rebuilding the evolution history of the CAOB. Clastic
sediments hold key information about their source materials, tectonic
settings and crustal growth events (e.g. Bhatia and Taylor, 1981;
Bhatia and Crook, 1986; Roser and Korsch, 1986; McLennan et al.,
1990). The geochemistry of sedimentary rocks and the geochronology
of their detrital zircons were previously used to reconstruct the
Published by Elsevier B.V. All rights reserved.
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Fig. 1. Simplified geological map of the southern Central Asian Orogenic Belt (after He, 2004). Major faults: 1 Altay–Zavhan Fault; 2 Hovd Fault; 3 Erqis Fault; 4 Armantai Fault;
5 Kalamaili Fault. Ophiolites: 1 Altay ophiolite; 2 Bulgan ophiolite; 3 Kuerti ophiolite; 4 Armantai ophiolite; 5 Kalamaili ophiolite. Inset shows a simplified tectonic map of the Central
Asian Orogenic Belt (Jahn et al., 2000). Abbreviations: SC, Siberian Craton; NC, North China Craton; TC, Tarim Craton; CAOB, Central Asian Orogenic Belt; NOB, Neoproterozoic
Orogenic Belt; TM, Tuva–MongolianMassif. Sample locations aremarked with stars: red color for this study and blue color for previous studies (Li et al., 2007; Long et al., 2007, 2010;
Sun et al., 2007).
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regional tectonic evolution (Nelson, 2001; Cullers and Podkovyrov,
2002; Griffin et al., 2004; Hofmann, 2005; Gerdes and Zeh, 2006;
Dickinson and Gehrels, 2009; Safonova et al., 2010). Recently, such
studies were successfully applied to terranes in the southern CAOB
(Long et al., 2007, 2008, 2010; Kelty et al., 2008; Kröner et al., 2010;
Ren et al., 2011; Rojas-Agramonte et al., 2011).

The Junggar Block is one of the largest terranes in the southern
CAOB and is located between the Chinese Altai and Tianshan orogenic
belts (Xiao et al., 2004, 2008; Fig. 1, inset B). It is traditionally divided
into three parts: Junggar Basin, East Junggar and West Junggar
(e.g. BGMRX 1993). The Junggar Basin is mainly filled with pre-
Carboniferous marine and post-Carboniferous continental sediments,
whereas the East and West Junggar are dominated by igneous rocks,
which form the basin ranges (BGMRX 1993; Zhang et al., 2009). Based
on gravitational, aeromagnetic and seismic data, it has been suggested
that the basin is underlain by ancient continental basement and that
the Junggar Block was a Precambrian microcontinent (e.g. Li, 2004;
Charvet et al., 2007, and references therein). However, based on the
geochemical and Nd juvenile isotopic features of igneous rocks
surrounding the Junggar Basin, other authors have interpreted the
Junggar block as a fragment of accreted oceanic crust and/or a
volcanic arc of Early Paleozoic age (Filippova et al., 2001; Chen and
Jahn, 2004; Jahn, 2004; Long et al., 2006; Yuan et al., 2006; Zheng
et al. 2007; Xiao et al., 2008). In addition, the suture zone that
stitches the Siberian plate to the Tarim plate, and to which plate the
Junggar Block belongs has been a subject of debate for the past
several years (e.g., Xiao et al., 1990; Ma et al., 1997; Shu et al., 2000).
The occurrence of ophiolitic terranes of various ages around the
Junggar Basin (i.e., in East and West Junggar) is also indicative of
a complex history for the southern and resulted in many, often
controversial, regional tectonic reconstructions (Jian et al., 2003; Ping
et al., 2005; Tang et al., 2007; Xiao et al., 2008, 2009; Wang et al.,
2009).

In this paper, we present new geochemical and geochronological
data on Paleozoic graywackes from the lower sedimentary units of East
Junggar (Fig. 1). Our results provide new constraints on the provenance
of the graywackes and their depositional tectonic settings, which are
indicative of Paleozoic subduction–accretion processes in East Junggar.
The data also contribute to our understanding of the complex tectonic
evolution of the Junggar Block and that of the southern CAOB.

http://dx.doi.org/10.1029/2007TC002128
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2. Geological setting

East Junggar is located between the Early Paleozoic Chinese Altai
magmatic arc and the Late Paleozoic Harlik arc, which are separated by
the Erqis accretionary complex to the north and the Kelamaili ophiolite
belt to the south (Fig. 1; Li, 2004; Xiao et al., 2008). The East Junggar
terrane is dominated by Paleozoic accretionary complexes formed
during northward subduction of the southern Paleo-Asian Ocean (PAO)
(Coleman, 1989; Feng et al., 1989; Şengör and Natal'in, 1996; Xiao et al.,
2009; Xiao et al., 2011). It is made up of the NW-striking Dulate and
Yemaquan island-arcs, which are separated by the highly deformed and
dismembered Armantai ophiolite belt (Fig. 2; Li, 2003; Xiao et al., 2004).
TheDulate arc extends along thenorthern side of theArmantai ophiolite
and consists mainly of Devonian–Carboniferous volcanic rocks, includ-
ing picrite, boninite, high-Mg andesite, and Nb-rich basalt (Zhang et al.,
2005; Zhang et al., 2008). The Yemaquan arc is located south of the
Armantai ophiolite and is dominated by Ordovician–Carboniferous
clastic rocks and carbonates, with subordinate volcaniclastic rocks
(BGMRX, 1993; Xiao et al., 2009).

SHRIMP U–Pb zircon dating of the ophiolite belts in East Junggar
yielded Early Paleozoic ages of 481±5 to 489±4 and 503±7 Ma for
the Armantai ophiolite (Jian et al., 2003; Xiao et al., 2008, 2009), and
Middle–Late Paleozoic ages of 403±9 to 330±2 Ma for the Kalamaili
ophiolite (Ping et al., 2005; Tang et al., 2007; Wang et al., 2009).
According to the reconstructions by Xiao et al. (2009), the Armantai
and Kalamaili ophiolites were formed by subduction of the southern
branch of the PAO during the Early to Middle Paleozoic. The presence
of uniformly deposited Late Carboniferous continental volcanic-
sedimentary sequences on both sides of the Armantai ophiolite belt
allowed Li (2004) to suggest that closure of the PAO in East Junggar
predated the Late Carboniferous and was followed by post-collisional
Fig. 2. Geological map of East Junggar with
A-type granitoids and Cu–Ni-bearing mafic and ultramafic plutons
(Han et al., 2006; Mao et al., 2008; Zhang et al., 2008). Recent geo-
chronological studies demonstrate that the post-collisional plutons
intruded during the Late Carboniferous to the Permian, within an age
span of 280–330 Ma (Li et al., 2004; Lin et al., 2007; Tang et al., 2007;
Mao et al., 2008; Su et al., 2008; Yang et al., 2008, 2009; Chen et al.,
2009).

Early Paleozoic sediments in East Junggar are mainly exposed in the
Yemaquan arc terrane. The oldest sedimentary stratum, theMiddle–Late
Ordovician Huangcaopo Group (HG), consists of low-grade marine
clastic sediments and andesitic–felsic volcanic rocks (BGMRX, 1993).
The group occurs in the southeastern Yemaquan arc and has
been divided into (from bottom to top), the Wuliegai, Daliugou and
Miaoergou formations (Cai, 1999). The Wuliegai and Miaoergou
formations aremainly composed of tuffaceous and calcareous sandstone
and siltstone, intercalatedwithminor limestones, whereas the Daliugou
formation comprises andesitic–felsic volcanic rocks, interlayered with
subordinate tuffs and siltstones. The Middle to Late Silurian Kubusu
Group (KG) and Hongliuxia Formation, which unconformably overlie
the HG, occurmainly in the Yemaquan arc and are dominated bymarine
siltstone and sandstone (BGMRX, 1993). The Late Paleozoic sedimentary
sequences in East Junggar consist of Devonian to Carboniferous arc-
related volcanic rocks and clastic sediments, which are widely
distributed in both the Dulate and Yemaquan arc terranes (Zhang et
al., 2009).

Fresh graywackes from the HG and KG were sampled for
geochemistry and detrital zircon U–Pb dating (Fig. 1). All samples
consist of subangular to subrounded,moderately to poorly sorted grains
of quartz (10–20%), feldspar (20–30%) and rock fragments (15–25%)
within a silt-clay matrix. The rock fragments consist of andesitic to
felsic volcanic rocks and less abundant slightly metamorphosed
sample locations (after BGMRX, 1993).

image of Fig.�2


Table 1
Geochemical compositions of graywackes from the Huangcaopo Group and Kubusu Group.

Sample
strata

YW27 YW28 YW29 YW30 YW33 YW35 YW36 YW37 YW38 YW41 YW42 Average

Huangcaopo Group (HG)

Major element (wt.%)
SiO2 63.4 64.1 62.7 63.7 88.3 67.7 67.2 66.7 49.6 68.0 61.1 65.7
TiO2 0.73 0.69 0.78 0.78 0.18 0.58 0.62 0.66 1.29 0.79 0.87 0.7
Al2O3 16.7 16.5 16.3 16.1 5.3 14.8 14.9 14.9 17.8 16.2 18.5 15.3
Fe2O3

T 5.86 5.56 6.52 6.35 0.98 5.03 5.11 5.20 11.17 4.05 4.57 5.5
MnO 0.07 0.07 0.11 0.10 0.04 0.09 0.09 0.10 0.18 0.05 0.10 0.1
MgO 3.23 2.93 3.36 3.31 0.05 2.20 2.48 2.63 5.07 1.08 1.31 2.5
CaO 0.22 0.50 1.44 1.26 0.74 2.34 2.54 2.72 6.94 0.40 1.27 1.9
Na2O 2.10 1.54 2.08 2.07 1.92 3.22 3.28 3.32 3.73 4.02 5.73 3.0
K2O 4.29 4.70 2.87 2.80 1.03 2.19 2.05 1.87 0.61 2.64 3.86 2.6
P2O5 0.11 0.10 0.22 0.21 0.05 0.17 0.18 0.20 0.18 0.14 0.26 0.2
LOI 3.09 3.38 3.40 3.13 0.98 1.45 1.42 1.32 3.33 2.42 2.19 2.4
Total 99.8 100.1 99.8 99.8 99.6 99.7 99.8 99.7 99.9 99.8 99.8 99.8

Trace element (ppm)
Sc 14.4 14.9 15.7 15.8 1.79 10.4 17.0 9.4 20.1 15.7 13.8 13.5
Cr 88.7 86.7 85.9 97.5 11.6 66.6 99.5 88.6 15.2 31.5 26.8 63.5
Co 9.03 5.01 23.11 11.84 0.52 12.51 17.20 15.12 44.56 2.85 8.38 13.6
Ni 34.57 34.56 50.33 49.31 3.68 33.04 55.33 37.08 14.68 11.55 9.45 30.3
Ga 22 21 21 20 5 18 21 18 22 19 22 18.9
Rb 193 243 179 170 42 119 205 101 65 97 53 133.2
Sr 48 49 195 189 47 309 157 314 1860 250 252 333.4
Ba 494 637 424 399 243 339 575 232 121 577 243 389.3
Y 26 32 37 37 12 33 30 37 33 38 40 32.2
Zr 196 200 214 211 103 190 202 244 123 268 301 204.5
Nb 10.7 10.6 9.85 10.0 2.96 8.29 10.1 9.93 3.04 10.4 10.0 8.7
Hf 5.13 5.28 5.18 4.95 2.39 4.44 4.85 5.65 2.84 6.10 6.51 4.8
Ta 0.88 0.86 0.80 0.80 0.30 0.67 0.80 0.81 0.21 0.75 0.67 0.7
Pb 11.2 13.0 18.1 10.4 11.7 11.9 13.1 22.1 5.48 15.9 6.44 12.7
Th 12.4 12.8 12.0 11.9 6.58 9.61 12.9 12.3 2.25 7.90 4.29 9.5
U 3.23 2.44 2.71 2.54 1.36 2.18 2.35 2.76 0.83 2.23 1.68 2.2
La 27.2 29.8 33.0 27.0 24.3 27.2 30.5 29.1 9.0 25.2 25.9 26.2
Ce 58.6 65.3 70.4 64.0 46.8 57.4 62.7 68.9 23.7 56.3 59.1 57.5
Pr 6.97 7.97 8.86 7.53 5.37 7.10 7.56 8.39 3.55 7.11 7.59 7.1
Nd 27.1 32.0 35.4 30.1 20.8 28.5 29.1 34.9 16.7 28.7 32.8 28.7
Sm 5.28 6.11 7.10 6.31 3.11 5.69 5.53 7.06 4.50 5.98 6.84 5.8
Eu 1.15 0.99 1.48 1.42 0.76 1.29 1.24 1.39 1.52 1.34 1.49 1.3
Gd 4.80 5.34 6.53 6.15 2.59 5.52 5.20 6.45 4.83 5.70 6.30 5.4
Tb 0.76 0.89 1.05 1.03 0.36 0.89 0.84 1.07 0.85 1.00 1.05 0.9
Dy 4.32 5.04 6.08 6.05 1.89 5.20 4.72 5.90 5.06 6.09 6.06 5.1
Ho 0.90 1.08 1.23 1.26 0.37 1.05 0.96 1.17 1.06 1.31 1.29 1.1
Er 2.63 3.05 3.50 3.46 1.01 2.93 2.79 3.43 2.85 3.73 3.69 3.0
Tm 0.41 0.47 0.51 0.52 0.15 0.44 0.43 0.51 0.42 0.57 0.57 0.5
Yb 2.68 3.20 3.45 3.36 1.02 2.89 2.81 3.40 2.69 3.81 3.74 3.0
Lu 0.43 0.51 0.54 0.54 0.16 0.47 0.46 0.55 0.43 0.61 0.61 0.5
CIA 66 66 64 65 49 55 55 55 48 61 54 57.9
PIA 76 77 69 70 48 57 56 55 48 64 55 61.3
ICV 0.99 0.97 1.05 1.04 0.93 1.06 1.09 1.11 1.63 0.81 0.96 1.1
LaN/YbN 7.30 6.69 6.86 5.76 17.05 6.75 7.80 6.14 2.41 4.74 4.97 7.0
GdN/YbN 1.48 1.38 1.56 1.52 2.10 1.58 1.53 1.57 1.48 1.24 1.39 1.5
Eu/Eu* 0.69 0.52 0.65 0.69 0.79 0.69 0.70 0.62 0.99 0.69 0.68 0.7
ΣREE 143 162 179 159 109 146 155 172 77 147 157 146

Sample
strata

KP02 KP03 KP05 KP06 KP07 KP08 KP33 KP34 KP35 Average PAAS

Kubusu Group (KG)

Major element (wt.%)
SiO2 73.5 72.0 64.7 62.5 71.1 73.1 49.8 66.4 67.2 66.7 62.8
TiO2 0.48 0.51 0.75 0.81 0.60 0.30 1.17 0.81 0.67 0.7 1.00
Al2O3 12.1 13.1 17.4 17.5 14.3 13.6 15.7 14.6 14.6 14.8 18.9
Fe2O3

T 3.27 3.57 5.41 4.31 2.53 2.74 8.08 5.47 4.73 4.5 6.50
MnO 0.12 0.10 0.09 0.09 0.08 0.06 0.12 0.12 0.11 0.1 0.11
MgO 1.01 1.07 1.63 1.21 0.77 1.00 8.41 1.79 1.57 2.1 2.20
CaO 1.67 1.38 0.55 2.02 1.53 0.90 6.36 1.99 2.33 2.1 1.30
Na2O 3.78 5.47 5.97 6.04 5.59 6.37 3.44 4.50 5.70 5.2 1.20
K2O 1.95 0.98 1.48 2.96 1.87 0.42 1.45 1.84 0.71 1.5 3.70
P2O5 0.11 0.10 0.15 0.27 0.19 0.09 0.28 0.21 0.18 0.2 0.16
LOI 1.79 1.42 1.58 2.00 1.08 1.12 5.20 1.99 2.01 2.0 –

Total 99.7 99.7 99.7 99.8 99.7 99.7 100.1 99.7 99.7 99.8 97.9

Trace element (ppm)
Sc 8.40 7.69 15.0 10.6 9.36 2.57 21.9 13.0 11.0 11.1 16.0
Cr 9.09 8.62 10.5 8.99 7.08 7.57 333 7.47 11.7 44.8 110
Co 3.38 2.19 5.95 9.87 2.08 1.04 34.02 6.16 6.38 7.9 23
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Table 1 (continued)

Sample
strata

KP02 KP03 KP05 KP06 KP07 KP08 KP33 KP34 KP35 Average PAAS

Kubusu Group (KG)

Trace element (ppm)
Ni 6.32 5.71 5.14 5.33 4.00 4.14 197 5.07 5.51 26.5 55
Ga 12 11 18 16 13 11 17 18 15 14.7 20
Rb 34 15 87 32 32 6 36 23 6 30.0 160
Sr 173 299 650 452 340 290 441 351 325 368.8 200
Ba 694 316 1278 740 409 129 443 498 143 516.5 650
Y 21 24 25 21 22 7 23 36 37 24.1 27
Zr 151 190 155 146 154 101 156 213 217 164.7 210
Nb 5.58 5.91 5.74 5.40 6.28 4.10 5.44 5.14 5.19 5.4 19.0
Hf 4.61 5.62 4.68 4.20 4.40 3.26 4.24 6.36 6.24 4.8 5.00
Ta 0.47 0.44 0.43 0.39 0.49 0.40 0.40 0.40 0.42 0.4 1.28
Pb 15.0 12.0 7.28 8.88 11.2 8.46 3.94 8.26 7.84 9.2 20.0
Th 4.46 5.89 6.33 4.72 4.73 5.09 2.52 2.75 3.01 4.4 14.6
U 1.75 2.35 2.17 2.01 1.98 2.04 0.73 1.20 1.33 1.7 3.10
La 12.0 16.2 20.1 16.2 18.5 11.9 18.1 15.1 12.4 15.6 38.2
Ce 27.8 36.3 41.4 35.9 39.5 23.8 41.4 36.8 31.3 34.9 79.6
Pr 3.82 4.57 5.25 4.32 5.23 2.77 5.74 4.98 4.43 4.6 8.83
Nd 16.0 19.1 22.2 17.9 21.8 10.0 24.7 22.7 19.6 19.3 33.9
Sm 3.64 4.08 4.96 3.91 4.51 1.78 5.16 5.49 4.74 4.3 5.55
Eu 0.83 0.85 1.41 1.08 1.09 0.37 1.63 1.45 1.00 1.1 1.08
Gd 3.58 4.00 4.89 3.89 4.14 1.52 4.93 5.64 5.28 4.2 4.66
Tb 0.65 0.71 0.79 0.63 0.70 0.24 0.80 1.04 1.00 0.7 0.77
Dy 3.95 4.40 4.74 3.81 4.26 1.39 4.63 6.38 6.54 4.5 4.68
Ho 0.87 0.94 1.00 0.82 0.88 0.28 0.93 1.36 1.44 0.9 0.99
Er 2.45 2.73 2.75 2.39 2.53 0.81 2.52 4.00 4.31 2.7 2.85
Tm 0.40 0.44 0.43 0.38 0.40 0.12 0.37 0.61 0.69 0.4 0.41
Yb 2.65 2.90 2.83 2.49 2.69 0.84 2.29 3.99 4.56 2.8 2.82
Lu 0.42 0.47 0.44 0.40 0.42 0.13 0.34 0.63 0.74 0.4 0.43
CIA 52 51 58 51 51 52 45 53 50 51.4 69
PIA 52 51 59 51 51 52 45 53 50 51.7 77
ICV 1.01 1.00 0.91 1.00 0.90 0.87 1.85 1.13 1.09 1.1 0.85
LaN/YbN 3.25 4.01 5.09 4.67 4.92 10.19 5.69 2.71 1.95 4.7 9.72
GdN/YbN 1.12 1.14 1.43 1.29 1.27 1.50 1.78 1.17 0.96 1.3 1.37
Eu/Eu* 0.69 0.63 0.87 0.84 0.76 0.67 0.97 0.79 0.61 0.8 0.63
ΣREE 79 98 113 94 107 56 113 110 98 96 185

Note: CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100 and PIA=[(Al2O3–K2O)/(Al2O3+CaO*+Na2O–K2O)]×100, where CaO* represents Ca in silicate-bearing minerals only and
all in molecular proportions; ICV=(Fe2O3+K2O+Na2O+CaO+MgO+TiO2)/Al2O3; PAAS from Taylor and McLennan (1985).
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sedimentary rocks, i.e., pelite and sandstone. The matrix (~30 vol.%)
of the graywackes mainly consists of a matted mixture of tiny grains
of quartz, feldspar and clay minerals with accessory chlorite and
epidote.
3. Results

3.1. Geochemistry of graywackes

3.1.1. Major elements
The HG graywackes show a relatively narrow variation in SiO2

content from 61.1 wt.% to 68.0 wt.%, with an average of 65.7 wt.%. The
samples have wide ranges of Na2O (1.54–5.73 wt.%, av. 3.04 wt.%) and
K2O (1.87–4.70 wt.%, av. 3.03 wt.%), with Na2O/K2O ratios between
0.3 and 1.8. In comparison with the Post-Archean Australian average
shale (PAAS) (Taylor and McLennan, 1985), the HG samples yield
lower Al2O3 (av. 16.1 wt.%) and Fe2O3

T (av. 5.36 wt.%) and higher MgO
(av. 2.50 wt.%), implying a more mafic source. Although the HG and
KG graywackes have similar mineral/lithic assemblages, they exhibit
clear geochemical differences (Table 1). The KG graywackes show a
relatively wide variation in SiO2 (62.5–73.5 wt.%) and much lower
Al2O3 (av. 14.7 wt.%), Fe2O3

T (av. 4.00 wt.%), MgO (av. 1.26 wt.%) and
K2O (av. 1.53 wt.%), and higher Na2O (av. 5.43 wt.%). All HG and KG
samples are characterized by negative correlations between TiO2,
Al2O3 and Fe2O3

T versus SiO2, but there is no correlation between Na2O
and K2O versus SiO2 (Fig. 3).
3.1.2. Trace elements
The sampled graywackes show positive correlations in the K2O

versus Ba and K2O versus Rb diagrams (Fig. 4a, b). These correlations
suggest that K-bearing clay minerals (e.g., illite, kaolinite) control the
abundances of Ba, K and Rb in the graywackes (McLennan et al.,
1983). No clear trends are observed in the K2O versus Sr plot (Fig. 4c).
The KG samples have higher Sr than the HG samples (Table 1),
implying intensified plagioclase fractionation in the source.

Cr and Ni are well correlated in the graywackes (Fig. 4), suggesting
no fractionation between them during weathering (Feng and Kerrich,
1990). Compared with the average composition of the upper continen-
tal crust, the HG and KG samples have respectively higher Cr and lower
Ni abundances. The increase of Cr, Ni and MgO in the HG versus KG
sediments confirms that the HG sediments were derived from a more
mafic source. Unlike Cr, Ni and MgO, the High Field Strength Elements
(HFSE, e.g., Zr, Hf, Nb, Ta, Th, U) are usually abundant in felsic rocks and,
therefore, we would expect a lower abundance in the HG compared to
the KG samples. However, the HG samples exhibit slightly higher HFSEs
than the KG samples. Because the HFSEs are usually abundant in
accessory minerals (e.g. rutile and zircon), we suggest that the slightly
higher HFSEs in the HG samples indicate a greater abundance of
accessory minerals in the source of the HG compared to the KG.

All rock samples are enriched in light Rare Earth Element (REE)
and show relatively horizontal heavy REE patterns (LaN/YbN=1.95–
10.2, Fig. 5). Although the HG samples have higher LaN/YbN ratios
(av. 6.33) than those of the KG samples (LaN/YbN av.=4.60), they all
show similar moderate negative Eu anomalies (HG: Eu/Eu*av.=0.66;



Fig. 3. Geochemical diagrams of major elements for the Paleozoic graywackes in East Junggar.
Data for PAAS are from Taylor and McLennan (1985).
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KG: Eu/Eu*av.=0.73), resembling PAAS (Eu/Eu*av.=0.65, Taylor and
McLennan, 1985). Both graywackes display REE patterns and spider
diagrams similar to the Habahe flysch sediments in the neighboring
Chinese Altai, which are thought to have been deposited in a fore-arc
setting (Fig. 5; Long et al., 2008, 2010).

3.2. Detrital zircon U–Pb dating

3.2.1. Huangcaopo Group
Zircons in samples of the HG are 70 to 140 μm in size, transparent,

mostly euhedral prismatic or, to a lesser degree, (sub)rounded. The
zircons possess clear oscillatory zoning and high Th/U ratios (mostly
N0.2, Fig. 6f), suggesting an igneous origin. Three samples were dated
(Fig. 6a–c) and two of them (YW31 and YW34) yielded similar age
spectra (Fig. 7a–b). In these two samples, prismatic zircons yielded
Early Paleozoic 206Pb/238U ages, which exhibit a prominent age peak
at ~490 Ma and a younger age peak at ~440 Ma. The remaining (sub)
rounded zircons yielded various Precambrian ages (Supplementary
Table A1), with the main age peak in the Neoproterozoic (~930 Ma,
Fig. 7a–c). Five Paleoproterozoic 207Pb/206Pb ages (1.77–2.03 Ga)
were identified in sample YW31 (Fig. 7a).

Zircons from the third sample (YW40) exhibit much younger
206Pb/238U ages (Fig. 6d). The prismatic zircons yielded Carboniferous
to Cambrian ages, with two prominent age peaks: Early Carboniferous
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Fig. 4. Diagrams of geochemical compositions for the Paleozoic graywackes in the East Junggar. Symbols are as in Fig. 3.
Data for PAAS are from Taylor and McLennan (1985).
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(~353 Ma) and Early Silurian (~443 Ma). The latter age peak is similar
to the younger age peak in the other two samples (YW31 and YW34)
of the HG. The (sub)rounded zircons in sample YW40 also yielded
Neoproterozoic ages, which fall into two age-groups with peaks at
~550 Ma and ~930 Ma (Fig. 7c). The ~930 Ma peak is also present in
the age spectra of the other two samples of the HG group.

3.2.2. Kubusu Group
For the KG graywackes, only one sample (KP04) yielded sufficient

dateable zircons. The zircons are very small (50 to 100 μm),
transparent, and most of them are euhedral prismatic grains. All of
the zircon grains possess clear oscillatory zoning and high Th/U ratios
(N0.48), indicating a source dominated by igneous rocks. U–Pb dating
results for this sample yielded Early Carboniferous 206Pb/238U ages
spanning a very narrow interval between 323 Ma and 395 Ma, with a
clear peak at ~346 Ma that is similar to the youngest age peak in
sample YW40 of the HG (Figs. 6e and 7d).

4. Constraints on depositional age

The depositional age of the Early Paleozoic sedimentary sequence
in East Junggar is not well constrained due to the low abundance of
dateable fossils (BGMRX, 1993). The HGwas originally assigned to the
middle–Late Ordovician (BGMRX, 1993). Later, the group was divided
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Fig. 5. Chondrite-normalized REE patterns and upper crust-normalized spider diagrams for the Paleozoic graywackes. Symbols are as in Fig. 3.
Chondrite and PM normalizing values are from Sun and McDonough (1989) and upper crust-normalizing data are from Taylor and McLennan (1985).
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into three formations (Fig. 2), but the depositional ages did not
change (Cai, 1999). In this study, samples YW31 and YW34 were
collected from the lowest subdivision of the HG, the Wuliegai
Formation. The youngest zircon population in both samples gave
Early Paleozoic 206Pb/238U ages of ~440 Ma, indicative of a post-Early
Silurian depositional age for the Wuliegai Formation. Sample YW40
was collected from the uppermost subdivision, the Miaoergou
Formation. The youngest 206Pb/238U age population in this sample
peaks at ~355 Ma, suggesting a younger post-Early Carboniferous
depositional age for theMiaoergou Formation. Themost abundant age
population of detrital zircons in YW40 spans the interval 335–400 Ma.
However, no zircons with these ages have been identified in the
stratigraphically older Wuliegai Formation. If the Wuliegai Formation
was deposited after the Early Devonian (b400 Ma), the Devonian
detrital zircons found in the Miaoergou Formation should also be
present in the Wuliegai Formation. The absence of such zircons
suggests that theWuliegai Formationwas deposited during the period
from the Silurian to the Early Devonian (400–440 Ma). Therefore,
depositional age of the HG may be younger than previously thought.

The graywackes of the KG are thrust onto Devonian strata within
the study area and were previously considered to be part of the
Middle to Late Silurian Hongliuxia Formation (BGMRX, 1993).
However, all of the 206Pb/238U ages of the analyzed zircons in sample
KP04 cluster around a single age peak at ~346 Ma. This suggests a
younger depositional age for the KG graywackes and a source that was
dominated by Early Carboniferous igneous rocks. Given that both the
KG and the Miaoergou Formation have similar rock assemblages to
those of the Early Carboniferous Nanmingshui Formation in this
area (BGMRX, 1993) and have Carboniferous depositional ages, we
suggest that the two sequences should be regarded as a part of the
Nanmingshui Formation. Therefore, the HG used in the following
discussion does not include the Miaoergou Formation.
5. Discussion

5.1. Weathering characteristics

The Chemical Index of Alteration (CIA), the Plagioclase Index of
Alteration (PIA) and the Index of Compositional Variability (ICV) are
frequently used parameters of the weathering characteristics and
source composition of sedimentary rocks (McLennan et al., 1993; Cox
et al., 1995; Fedo et al., 1995; Cullers and Podkovyrov, 2000; Bhat and
Ghosh, 2001). The graywackes in East Junggar have very low CIA
values (50–66), indicating that they are not strongly weathered, or
that compositionally mature alumina-rich minerals were absent in
the source (Nesbitt and Young, 1982; Fedo et al., 1995). The CIA values
of the KG samples (av. 52) are lower than those of the HG samples (av.
60), which suggest that the source of the KG graywackes was less
weathered before deposition. More evidence can be found in their
respective PIA values (KG samples: av. 51.7; HG samples: av. 61.3). In
the ACNK (ACNK=molar ratio of Al2O3/[CaO+Na2O+K2O]) diagram
(Fig. 8), the KG samples plot along the average gabbro-tonalite–
granodiorite line, implying more fresh feldspars in the source, which
had experienced no significant chemical weathering. The HG samples,
however, plot away from the predicted weathering trend of gabbro-
tonalite–granodiorite. This suggests that the HG graywackes were
likely altered by post-depositional K-metasomatism. The identical
average ICV values (~1.1) for both the KG and HG samples point to an
immature source for the Paleozoic graywackes in East Junggar.
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Fig. 6. U–Pb concordia diagrams and Th–U plots for detrital zircons from the Paleozoic graywackes with representative CL images.
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The geochemistry of the graywackes and the large proportion of
andesitic–felsic igneous rocks among the rock fragments suggest a
magmatic arc source. All the graywackes show relatively wide
variations of Th/Sc and a narrow range of Zr/Sc, which are positively
correlated in the Th/Sc–Zr/Sc diagram (Fig. 9a). This reveals variable
contributions of less reworked source material, which suggests that
the provenance of the graywackes was controlled more by source
composition than by sediment recycling (McLennan et al., 1993;
Cullers, 1994). The graywackes were probably derived from a source
dominated by felsic–andesitic igneous rocks that are marked by their
low La/Th ratios and relatively high Hf contents (Fig. 9b).

5.2. Tectonic settings and provenance

The geochemistry of sediments deposited in oceanic island arc,
continental island arc, active continental margin and passive margin
tectonic settings, has been investigated by many researchers (e.g.,
Bhatia and Taylor, 1981; Bhatia and Crook, 1986; Roser and Korsch,
1986; McLennan et al., 1990; McLennan and Taylor 1991). Generally,
Al2O3, Fe2O3

T+MgO, TiO2 and Al2O3/SiO2 ratios decrease in sand-
stones from oceanic island arc settings to passive margins, while SiO2

and K2O/Na2O ratios increase (Bhatia, 1983). The HG and KG samples
have moderate SiO2, Al2O3, TiO2 and Al2O3/SiO2 ratios that clearly
differ from those of the graywackes formed in either setting. Instead,
they show a strong affinity with graywackes from continental island
arc or active continental margin settings (Table 2). The contents and
ratios of trace elements (including REEs) in the HG and KG samples
exhibit the greatest similarity to graywackes from continental island
arcs (Table 2). In the discriminatory La–Th–Sc and Th–Sc–Zr/10
diagrams (Bhatia and Crook, 1986), most samples plot in continental
arc field (Fig. 10a–b). Similar results are revealed by the Sc/Cr–La/Y
and La/Sc–Ti/Zr diagrams (Bhatia and Crook, 1986) (Fig. 10c–d). These
geochemical features, in combination with their weak weathering
characteristics and immature source composition, suggest that the
graywackes in East Junggar were deposited in a basin adjacent to a
continental arc.
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Fig. 7. Relative probability plots for detrital zircons from the Paleozoic graywackes (206Pb/238U ages for zircons b1000 Ma and 207Pb/206Pb ages for zircons N1000 Ma).
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The detrital zircon ages of the sampled graywackes can be grouped
at ~350 Ma, ~440 Ma, ~500 Ma, 740–950 Ma, 1.7–2.0 Ga, and ~2.7 Ga
(Fig. 7). Several recent studies have revealed that voluminous Late
Devonian–Early Carboniferous volcanic rocks and granitoids are
exposed in the Dulate arc (Zhang et al., 2006; Lin et al., 2008; Su
et al., 2008; Tan et al., 2009), in the neighboring Chinese Altai
(Wang et al., 2006; Tong et al., 2007; Yuan et al., 2007; Sun et al., 2009;
Cai et al., 2010; Wang et al., 2010) and in South Mongolian arcs
(Bibikova et al. 1992; Kozakov et al., 2002; Kröner et al., 2007;
Yarmolyuk et al., 2008; Demoux et al., 2009a). The immature source
and poorly sorted minerals and rock fragments of the graywackes
suggest that one of themagmatic arcs could be themain source for the
KG and the Miaoergou Formation. Early Paleozoic igneous rocks,
especially ones older than 420 Ma, are sparse in East Junggar.
However, ~440 and ~500 Ma igneous rocks are common in southern
Mongolia (Bibikova et al. 1992; Kozakov et al., 2002; Kröner et al.,
2007; Yarmolyuk et al., 2008; Demoux et al., 2009a) and in the
Fig. 8. ACNK diagram for the Paleozoic graywackes in East Junggar (after Fedo et al.,
1995). CIA values range from 50 for fresh primary igneous rocks to a maximum of 100
for the most weathered rocks (Fedo et al., 1995). Arrows show the predicted
weathering trend of To, Gd and Gr. Symbols are as in Fig. 3.
Data for tonalite (To), granodiorite (Gd), granite (Gr) and average Archean upper crust
are from Condie (1993).
Chinese Altai (Wang et al., 2006; Yuan et al., 2007; Sun et al., 2008,
2009; Long et al., 2010). The older ages of 740–950 Ma, 1.7–2.0 Ga and
~2.7 Ga have been reported for the Tuva–Mongolian, Dzabkhan, Baga
Bogd and South Gobi microcontinents (Kozakov et al., 1999, 2007;
Kuzmichev, et al., 2001; Demoux et al., 2009b, 2009c). This suggests a
potential source for the Precambrian materials of the graywackes.
Precambrian rocks are also exposed in the Tarim and North China
blocks, but their detrital zircon age distributions lack the age peaks at
500–700 Ma and 1.0–1.8 Ga (Gehrels and Yin, 2003; Darby and
Gehrels, 2006). It is therefore unlikely that the two blocks supplied
much clastic material to the graywackes of East Junggar (Fig. 11).
Instead, we suggest that the Precambrian clastic material of the HG
was derived from a source located to the north of East Junggar.
5.3. Evolution of the southern branch of the Paleo-Asian Ocean

Ophiolites represent remnants of oceanic crust, therefore, the
presence of ophiolites in East Junggar is essential to our understand-
ing of the Late Paleozoic evolution of the southern CAOB (Khain et al.,
2002; Xiao et al., 2003, 2004; Windley et al., 2007). The Armantai and
Kalamaili ophiolite belts are the largest ophiolites in East Junggar,
which formed during the Paleozoic evolution of the southern PAO
(Xiao et al., 2009). Recent zircon SHRIMP U–Pb dating of gabbros and
a plagiogranite from the Armantai ophiolite yielded ages of 481±5 to
489±4 Ma (Jian et al., 2003) and 503±7 Ma (Xiao et al., 2009),
respectively, which indicate that the Armantai branch of the PAO was
already open before the Early Ordovician. However, these ages do not
provide close constraints on the closure of the Armantai Ocean. The
occurrence of Ordovician and Middle–Late Devonian radiolarian
cherts in the region suggests that the Armantai Ocean was still a
wide ocean at that time and characterized by calm-water conditions
(Li, 1991; Xiao and Tang, 1991, 1992; He et al., 2001). Based on the
uniform Late Carboniferous continental volcanic-sedimentary rocks
on the both sides of the Armantai ophiolite belt, Li (2004) suggested
that closure of this oceanic branch predated the Late Carboniferous.
Our detrital zircon age spectra for the Early Paleozoic HG (samples
YW31 and YW34; Fig. 1) resemble that of the Habahe sediments in the
Chinese Altai (Fig. 11). This suggests that no ocean or other
geographical boundary existed between East Junggar and the Chinese
Altai at the time the HG and Habahe sediments were deposited.
Therefore, we suggest that the Armantai ophiolite was emplaced prior
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Fig. 9. Geochemical diagrams showing source variation and composition for the Paleozoic graywackes. Symbols are as in Fig. 3.
(a) Zr/Sc–Th/Sc diagrams after McLennan et al. (1993); (b) La/Th–Hf diagram after Floyd and Leveridge (1987).
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to oceanic closure and, hence, prior to the deposition of the HG and
Habahe sediments. Since the HG and the Habahe sediments were
deposited between the Silurian and Early Devonian, the emplacement
of the Armantai ophiolite must at least predate the Early Devonian.

The Kalamaili ophiolite has been considered as the boundary be-
tween the East Junggar area and the Late Paleozoic Harlik arc (Li, 1995;
Li et al., 2009). The Kalamaili tholeiitic gabbros and basalts possess
island-arc affinities and plot in the fields of IAB and MORB in
geochemical diagrams (Wang et al., 2003; Wang et al., 2009). Liang
et al. (1999) suggested that the Kalamaili ophiolite formed in a fore-arc
setting. Zircon SHRIMP U–Pb dating of plagiogranite and gabbros from
the Kalamaili ophiolite yielded ages of 403±9, 336±4 and 330±2 Ma,
suggesting that the southern branch of the PAOwas already open in the
Early Devonian (Ping et al., 2005; Tang et al., 2007; Wang et al., 2009).
Recent U–Pb dating of detrital zircons from a Carboniferous sandstone
sample on the south side of the ophiolite yieldedmajor age peaks at 365,
403, 464 and 516 Ma, and scattered Neoproterozoic to Neoarchean ages
(Li et al., 2007). The age distribution is characterized by relatively high
percentages of zirconswith Early Paleozoic ages (33%) and Precambrian
ages (27%). This differs from the age spectra of detrital zircons from
Table 2
Average chemical compositions of graywackes in East Junggar and graywackes in represent
Data for graywackes of various tectonic settings are from Bhatia (1983, 1985) and Bhatia a

Tectonic setting OIA CIA ACM PM

Samples Graywackes

SiO2 59 71 74 82
TiO2 1.06 0.64 0.46 0.49
Al2O3 17 14 13 8
Al2O3/SiO2 0.3 0.2 0.2 0.1
Ba 370 444 522 253
Pb 7 15 24 16
Th 2 11 19 17
U 1 3 4 3
Zr 96 229 179 298
Hf 2.1 6.3 6.8 10.1
Nb 2.0 8.5 10.7 7.9
Nd 11 21 25 29
LaN/YbN 2.8 7.5 8.3 10.8
Eu/Eu* 1.0 0.8 0.6 0.6
Ba/Sr 1.0 3.6 3.8 4.7
Th/U 2.1 4.6 4.8 5.6
Zr/Hf 46 36 26 30
Zr/Th 48 22 10 19

Abbreviations: OIA, oceanic island arc; CIA, continental island arc; ACM, active continental
Eu/Eu*=2×EuN/(SmN+GdN).
sandstone samples of the Harlik arc, which are dominated by Early
Paleozoic zircon ages (93%) (Sun et al., 2007). The detrital zircon age
spectra of the Carboniferous samples in this study (YW40 and KP04)
differ from both the Carboniferous sandstone in the southern Kalamaili
ophiolite belt and the Carboniferous samples of the Harlik arc (Fig. 7).
These differences suggest that an oceanic branch of the PAO may have
persisted between East Junggar and theHarlik arc during the deposition
of the KG and theMiaoergou Formation (b350 Ma), which is consistent
with the discovery of Late Devonian to Early Carboniferous radiolarian
fossils in siliceous rocks in the Kalamaili ophiolite belt (Shu and Wang,
2003).

5.4. Tectonic implications for the southern CAOB

Many different models have been proposed to explain the tectonic
evolution of the CAOB, including punctuated accretion by closure of
multipleoceans (Coleman, 1989; Zonenshain et al., 1990), the formation
of the Kipchak arc a single subduction zone (Şengör et al., 1993; Şengör
and Natal'in, 1996), fore-arc accretion punctuated by opening and
closure of back-arc basins (Yakubchuk et al., 2001, 2002), and collision
ative tectonic settings.
nd Crook (1986).

Huangcaopo G. Kubusu G.

Range Average Range Average

61.1–68.0 65 62.5–73.5 68.8
0.58–0.87 0.72 0.30–0.81 0.62
14.8–18.5 16.1 12.1–17.5 14.7
0.22–0.30 0.25 0.16–0.28 0.21
232–637 436 129–1278 526
6.44–22.1 13.6 7.28–15.0 9.87
4.29–12.9 10.7 2.75–6.33 4.62
1.68–3.23 2.46 1.20–2.35 1.85
190–301 225 101–217 166
4.44–6.51 5.34 3.26–6.36 4.92
8.29–10.7 9.99 4.10–6.28 5.42
27.1–35.4 31.0 10.0–22.7 18.7
4.74–7.80 6.33 1.95–10.2 4.60
0.52–0.70 0.66 0.61–0.87 0.73
0.7–13 2.2 0.4–4.0 1.5
2.5–5.5 4.3 2.3–2.9 2.5
38–46 42 31–35 34
16–70 21 20–77 36

margins; PM, passive margins.
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Fig. 10. Tectonic discriminating diagrams for the Paleozoic graywackes (after Roser and Korsch, 1986; Bhatia and Crook, 1986). Abbreviations for tectonic settings: A, oceanic island
arc; B, continental arc; C, active continental margin; D, passive continental margin. Symbols are as in Fig. 3.

Fig. 11. Comparative relative probability plots for detrital zircons from the Paleozoic graywackes in the Chinese Altai and East Junggar.
Original data: (a) from Long et al. (2010); (b) from Li et al. (2007); (c) and (d) from this study (data with disc.% N10 are excluded).
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of Gondwana-derived terranes to form the Kazakhstan–Baikal compos-
ite continent which later collided with the Siberian continent
(Dobretsov and Buslov, 2007; Buslov, 2011). In the southern CAOB,
there are multiple linear accretionary orogenic collages consisting of
terranes of different geodynamic origins, including Paleozoic arcs,
ophiolites, accretionary wedges and microcontinents (Coleman, 1989;
Xiao et al., 1992; Mossakovsky et al., 1993; Buchan et al., 2001;
Yakubchuk et al., 2002; Buslov et al., 2004; Windley et al., 2007; Xiao
et al., 2008, 2009). A branch of the PAO has been proposed to exist
between East Junggar and the Chinese Altai, which is characterized by a
Paleozoic ophiolite belt that includes the Kuerti and southern Qinghe
ophiolites (Xu et al., 2003; Wu et al., 2006a, 2006b). SHRIMP U–Pb
zircon dating of plagiogranite and basalt from these two ophiolites
yielded 206Pb/238U ages of 372±19Ma and 352±4 Ma, respectively
(Zhang et al., 2003; Wu et al., 2006a, 2006b). These Paleozoic ages
suggest that therewas still awideoceanbetween the two terranes in the
Late Devonian to Early Carboniferous. However, the similar detrital
zircon age spectra of Early Paleozoic sediments in East Junggar and the
Chinese Altai imply that no ocean existed between them prior to their
deposition (i.e., at 400–440 Ma). Given the similarity of the Early
Paleozoic sediments in the two terranes and the absence of pre-Silurian
basement rocks in the East Junggar terrane, we suggest that the pre-
Silurian sedimentary rocks in East Junggar were part of the forearc
accretionary complex of the Chinese Altai arc before the opening of the
Kuerti and southern Qinghe oceans. In combination with the emplace-
ment age of the Armantai and Kalamaili ophiolites, the age spectra of
detrital zircons and the ages of igneous rocks in East Junggar, a three-
phase tectonicmodel is proposed for the evolutionof the southernCAOB
involving a long-lasting northward subduction–accretion process
accompanied by the opening of a back-arc basin. This model also
provides insights into the history of the East Junggar and adjacent
terranes (Fig. 12).

Phase (1) During Ordovician time (480–440 Ma), the Armantai Ocean,
which was a branch of the southern PAO, subducted
northward beneath the Chinese Altai arc (Fig. 12a). As parts
Fig. 12. Schematic diagrams illustrating the tectonic evolution of East Junggar and adjace
ophiolite fragments; KOF, Kalamaili ophiolite fragments; YA, Yemaquan arc; DA, Dulate arc
of the ocean floor, the present fragments of the Armantai
ophiolite dominated by E-MORB and OIB-type basalts were
not yet emplaced (Jin et al., 2001).

Phase (2) In the Silurian (440–400 Ma), a large sequence of accretion-
ary complexes was formed along the southernmargin of the
Chinese Altai and the present fragments of the Armantai
ophiolite were accreted into the previously formed accre-
tionary complexes (Fig. 12b). The Yemaquan magmatic arc
was built over the accretionary complexes by continuous
subduction of the ocean floor. This interpretation is sup-
ported by the active continental margin tectonic setting and
northward provenance of the pre-Early Paleozoic detrital
zircons.

Phase (3) During a period from the Early Devonian to Early Carbonif-
erous (400–330 Ma), the present fragments of the Kalamaili
ophiolite were accreted onto the southern margin of the
Yemaquan arc (Fig. 12c). Rollback of the subduction zone
resulted in the formation of back-arc basins along the
southern margin of the Chinese Altai, which are represented
by theKuerti andQinghe ophiolites (Xu et al., 2003;Wuet al.,
2006a, 2006b). Potential southward subduction of the
oceanic floor of the back-arc basins is favored by the
existence of coeval arc-related rocks in the Dulata magmatic
arc (e.g., Mg-rich andesites, Nb-rich basalts, boninites, and
adakites: Niu et al., 1999, 2006; Zhang et al., 2005), and in the
formation of the Dulata magmatic arc to the north of the
Yemaquan arc.

6. Conclusions

(1) The Wuliegai Formation, the lowest subdivision of the HG, was
deposited during a period from the Silurian to the Early
Devonian (400–440 Ma). This suggests a younger depositional
age for the HG than previously assumed. The KG and the
uppermost subdivision of the HGwere deposited after ~355 Ma
nt terranes. See text (Section 5, Discussion) for details. Abbreviations: AOF, Armantai
.
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and can be incorporated into the Early Carboniferous Nan-
mingshui Formation.

(2) The Paleozoic graywackes in East Junggar were probably derived
from an immature source dominated by felsic–andesitic igneous
rocks anddeposited at anactive continentalmargin. Precambrian
materials in the graywackes were derived from a source located
to the north.

(3) The Armantai ophiolite was probably emplaced prior to the
Early Devonian, whereas the emplacement of the Kalamaili
ophiolite postdates the Early Carboniferous.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.gr.2011.05.015.
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Appendix A. Analytical methods

A.1. Geochemistry

Samples chosen for elemental and isotopic analysis were crushed
into small pieces, ultrasonically cleaned in distilled water, then dried
and powdered. Major element oxides (wt.%) were determined on
fused disks with a 1:8 sample to Li2B4O7 flux ratio, using a Rigaku
ZSX100e X-ray fluorescence spectrometer at the Key Laboratory of
Isotope Geochronology and Geochemistry, Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences. The accuracies of the
XRF analyses are estimated to be ca. 1% for SiO2, ca. 5% for MnO and
P2O5 and ca. 2% for other major oxides. The details of the analytical
procedures were described by Li (1997). Trace elements, including the
Rare Earth Element (REE), were analyzed using a Perkin-Elmer Sciex
ELAN 6000 ICP-MS at the Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences following procedures described by
Li et al. (2002) and Chen et al. (2010). The powdered samples (50 mg)
were digested with mixed HNO3+HF acid in steel-bomb coated
Teflon beakers in order to assure complete dissolution of refractory
minerals. An internal standard solution containing the single element
Rh was used to monitor the signal drift. The USGS rock standards G-2,
W-2, MRG-1 and AGV-1 and the Chinese national rock standards GSD-
12, GSR-1, GSR-2 and GSR-3 were analyzed to calibrate the elemental
concentrations of the measured samples. The analytical precision
obtained was generally better than 5%. Table 1 shows major and trace
element results of representative samples from the HG and KG.

A.2. Zircon separation and U–Pb dating

Detrital zircons were separated from the graywackes using
conventional heavy liquid andmagnetic techniques, and then selected
by handpicking under a binocular microscope. Zircon grains were
picked randomly and mounted on adhesive tape, then embedded in
epoxy resin and polished to about half of their diameter. In order to
observe the internal zonation pattern of the polished zircons, CL
imaging was performed on a JXA-8100 Electron Probe Microanalyzer
with a Mono CL3 Cathodoluminescence System for high resolution
imaging and spectroscopy at the Guangzhou Institute of Geochemis-
try, Chinese Academy of Sciences. The zircon U–Pb dating was
performed on a Thermo-Finnigan Neptune multi-collector ICP-MS
with a Newwave UP213 laser-ablation system at the Institute of Mineral
Resources, Chinese Academy of Geological Sciences, Beijing. Pure helium
was used as a carrier gas to enhance the transport efficiency of the
ablated material. The analyses were performed with a beam diameter
of 25 μm with a 10 Hz repetition rate and a laser power of ~2.5 J/cm2

(Hou et al., 2009). The masses of 206Pb, 207Pb, 204(Pb+Hg) and 202Hg
weremeasured in the ion-countingelectronmultiplier,while themasses
of the more abundant isotopes of 208Pb, 232Th, 235U and 238U were
collected by Faraday cup. The GJ1 zircon was used as a standard and the
Plesovice zircon was used to optimize the machine. U, Th and Pb
concentrations were calibrated using 29Si as the internal standard and
zirconM127 as the external standard (U: 923 ppm; Th: 439 ppm; Th/U:
0.475. Sláma et al., 2008). Subsequent data reduction was accomplished
off-line (207Pb/206Pb and 206Pb/238U ratios) using the ICPMS DataCal
4.3 program (Liu et al. 2008). Common-Pb can be considered negligible
because of the low 206Pb/204Pb ratios (N1000) for most of the analyzed
spots (Wu et al., 2006a, 2006b). The Plesovice zircon was used as
a secondary standard to check the accuracy of the analyses and yielded
a 206Pb/238U ageweightedmeanof 337±2 Ma (2SD, n=12),which is in
a good agreement with the ID-TIMS result (206Pb/238U age=337.13±
0.37 Ma (2SD), Sláma et al., 2008). Ages and concordia diagrams were
calculated using Isoplot/Ex 3.0 (Ludwig, 2003). Since 206Pb/238U ratios
generally providemoreprecise younger ages,whereas 207Pb/206Pb ratios
provide more precise older ages, we used 206Pb/238U ages for zircons
b1000 Ma and 207Pb/206Pb ages for zircons N1000 Ma (Gehrels et al.,
2006; Supplementary Table A1).
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