Инд. авторы: Baklanova N.I., Lozanov V.V., Titov A.T.
Заглавие: One-step preparation of TaIr3-based material and its ablation performance under extreme environmental conditions
Библ. ссылка: Baklanova N.I., Lozanov V.V., Titov A.T. One-step preparation of TaIr3-based material and its ablation performance under extreme environmental conditions // Corrosion Science. - 2018. - Vol.143. - P.337-346.
Идентиф-ры: DOI: 10.1016/j.corsci.2018.08.044; РИНЦ: 35728068; SCOPUS: 2-s2.0-85052088555; WoS: 000447570500033;
Реферат: eng: The solid-state interaction of TaC with Ir within the 1000-1600 degrees C temperature range leads to the formation of TaIr3 intermetallics. The durability of the TaIr3-based system with a silicon additive was studied under extreme environmental conditions. The TaIr3-based material displays satisfactory ablation resistance at 2000 degrees C in air in arc-jet. The post-test microstructural and XRD analysis of the developed material allowed us to propose the role of different constituents of the Ta - C - Ir - Si system. The iridium-containing phases play the most significant role in favorable ablation behavior of the developed system.
Ключевые слова: MICROSTRUCTURE; PHASE; CARBIDES; PLATINUM; INTERMETALLICS; IRIDIUM; BINARY-ALLOYS; OXIDATION BEHAVIOR; Oxidation; High temperature corrosion; X-ray diffraction; SEM; Tantalum oxide; Intermetallics; MECHANICAL-PROPERTIES; TEMPERATURES;
Издано: 2018
Физ. хар-ка: с.337-346
Цитирование: 1. Opeka, M.M., Talmy, I.G., Zaykoski, J.A., Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci. 39:19 (2004), 5887–5904.
2. Silvestroni, L., Kleebe, H.-J., Fahrenholtz, W.G., Watts, J., Super-strong materials for temperatures exceeding 2000 °C. Sci. Rep., 7, 2017, 40730.
3. Yamabe-Mitarai, Y., Murakami, H., Mechanical properties at 2223 K and oxidation behavior of Ir alloys. Intermetallics 48 (2014), 86–92.
4. Ishida, K.; Kainuma, R.; Oikawa, K.; Ohnuma, I.; Ohmori, T.; Sato, J. Iridium-Based Alloy with High Heat Resistance and High Strength and Process for Producing the Same. Patent US 7666352 B2, February 23, 2010.
5. Yamabe-Mitarai, Y., Gu, Y., Huang, C., Völkl, R., Harada, H., Platinum-group-metal-based intermetallics as high-temperature structural materials. JOM 56:9 (2004), 34–39.
6. Yamabe-Mitarai, Y., High-temperature strength of Ir-based refractory superalloys. MRS Proc., 646, 2000.
7. Zhu, L., Du, G., Bai, Sh., Zhang, H., Ye, Y., Ai, Y., Oxidation behavior of a double-layer iridium-aluminum intermetallic coating on iridium at the temperature of 1400°C - 2000°C in the air atmosphere. Corros. Sci. 123 (2017), 328–338.
8. Bao, Z.B., Murakami, H., Yamabe-Mitarai, Y., Microstructure and oxidation behaviour of Ir-rich Ir-Al binary alloys. Corros. Sci. 87 (2014), 306–311.
9. Yamabe-Mitarai, Y., Murakami, H., High-temperature oxidation resistance of Ir-based alloys. Mater. Jpn. 52:9 (2013), 440–444.
10. Yan, H., Zhang, M., Zheng, B., Wei, Q., Zhang, Y., Modeling the elastic anisotropies and mechanical strengths of Ir3X intermetallics. J. Alloys 696 (2017), 611–618.
11. Kontsevoi, O.Y., Freeman, A.J., Gornostyrev, Y.N., Maksyutov, A.F., Khromov, K.Y., Dislocation structure, phase stability, and yield stress behavior of L12 intermetallics: Ir3X (X = Ti, Zr, Hf, V, Nb, Ta). Metall. Mater. Trans. A 36:3 (2005), 559–566.
12. Ohriner, E.K., Processing of iridium and iridium alloys. Platin. Met. Rev. 52:3 (2008), 186–197.
13. Zhang, K., Ye, Y., Zhu, L., Bai, S., Novel Ir-X thermal protection coatings designed for extreme aerodynamic heating environment. Proceedings, 2017 http://dc.engconfintl.org/uhtc_iv/11.
14. Criscione, J. M.; Mercuri, R. A.; Schram, E. P.; Smith, A. W.; Volk, H. F. High Temperature Protective Coatings for Graphite, Part II; Technical Documentary Report ML-TDR-64–173, Part II; Air Force Materials Laboratory: Ohio, USA, 1964; p 156. // http://www.dtic.mil/dtic/tr/fulltext/u2/608092.pdf.
15. Holleck, H. Binäre Und Ternäre Carbide Und Nitride Der Übergangsmetalle Und Ihre Phasenbeziehungen; Habilitationsschrift KfK 3087B; Institut für Material- und Festkörperforschung: Kernforschungszentrum Karlsruhe, Germany, 1981; p 358. // https://publikationen.bibliothek.kit.edu/200015609.
16. Holleck, H., Binäre und ternäre carbid- und nitridsysteme der Übergangsmetalle. Materialkundlich-technische Reihe, 1984, Borntraeger, Berlin.
17. Strife, J.R., Smeggil, J.G., Worrell, W.L., Reaction of iridium with metal carbides in the temperature range of 1923 to 2400 K. J. Am. Ceram. Soc. 73:4 (1990), 838–845.
18. Raub, E., Falkenburg, G., Die Reaktionen Zwischen Karbiden Und Platin Bzw. Palladium Bei Hohen Temperaturen Im Hinblick Auf Das Sintern von Hartmetall. Z. Metallkde 55:4 (1964), 190–192.
19. Raub, E., Falkenburg, G., Reaktionen von Platinmetallen mit Carbiden der 4. und 5. Gruppe des Periodensystems der Elemente beim Sintern und Schmelzen. Metall 27:7 (1973), 669–679.
20. Pierre, G. S. Explanatory Research on the Protection of Carbon-Carbon Composites Against Oxidation at Very High Temperatures (*3000°F) with Engel-Brewer and Other Intermetallic Compounds; Final Report AD-A207907; The Ohio State University: Ohio, USA, 1988; p 204. http://www.dtic.mil/dtic/tr/fulltext/u2/a207907.pdf.
21. Ferguson, W.H., Giessen, B.C., Grant, N.J., The constitution diagram tantalum-iridium. Trans. Metall. Soc. AIME 227 (1963), 1401–1406.
22. Kuppusami, P., Murakami, H., Ohmura, T., Microstructure and mechanical properties of Ir–Ta coatings on nickel-base single-crystal superalloy TMS-75. J. Vac. Sci. Technol. A 22:4 (2004), 1208–1217.
23. Kazenas, E. K.; Tsvetkov, J. V. The evaporation of oxides; Nauka: Moskow, 1997, p. 543.
24. Hill, V.L., Malatesta, M.J., Investigation of refractory composites for liquid rocket engines. Final Report IITRI-B6102-13, 1970, IIT Research Institute, Chicago, IL, USA, 135 https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710019025.pdf.
25. Criscione, J. M.; Rexer, J.; Fenish, R. G. High Temperature Protective Coatings for Refractory Metals; Technical Report NASA-CR-74187; Union Carbide Corp.: Parma, OH, USA, 1964; p 45. // https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660014497.pdf.
26. Cheary, R.W., Coelho, A., A fundamental parameters approach to X-Ray line-profile fitting. J. Appl. Crystallogr. 25:2 (1992), 109–121.
27. Lozanov, V.V., Baklanova, N., Bulina, N.V., Titov, A., New ablation-resistant material candidate for hypersonic applications: synthesis, composition and oxidation resistance of HfIr3 -based solid solution. ACS Appl. Mater. Interfaces 10:15 (2018), 13062–13072.
28. Baker, R., Catalytic oxidation of graphite by iridium and rhodium. J. Catal. 61:2 (1980), 378–389.
29. Kwon, J.-W., Formation and Growth of Ir3Hf Layers at Ir/HfC Interfaces Between 1900°C and 2200°C. PhD Thesis. 1989, The Ohio State University, Ohio, USA https://etd.ohiolink.edu/!etd.send_file?accession=osu1487598748018913&disposition=inline.
30. Hsia, C., Mechanisms and Rate of Solid State Diffusion in Iridium - Hafnium Intermetallic Compound (Ir3Hf) and Calcium Sulfate. PhD Thesis. 1993, The Ohio State University, Ohio, USA https://etd.ohiolink.edu/!etd.send_file?accession=osu1487848078448938&disposition=inline.
31. Sha, J.B., Yamabe-Mitarai, Y., Phase and microstructural evolution of Ir–Si binary alloys with Fcc/Silicide structure. Intermetallics 14:6 (2006), 672–684.
32. NIST-JANAF Thermochemical Tables, 4th ed.; Chase, M. W., National Institute of Standards and Technology (U.S.), Eds.; American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology: Washington, DC : New York, 1998.
33. Reeve, D.A., Bright, N.F.H., Phase relations in the system CaO-Ta2O5-SiO2. J. Am. Ceram. Soc. 52:8 (1969), 405–409.
34. Qi, X.B., Chen, Y., Kang, X.H., Li, D.Z., Gong, T.Z., Modeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification. Sci. Rep., 7, 2017, 45770.
35. Langer, J.S., Dendrites, viscous fingers, and the theory of pattern formation. Science 243:4895 (1989), 1150–1156.
36. Ben-Jacob, E., Garik, P., The formation of patterns in non-equilibrium growth. Nature 343:6258 (1990), 523–530.
37. Tang, S., Yu, Y.-M., Wang, J., Li, J., Wang, Z., Guo, Y., Zhou, Y., Phase-field-crystal simulation of nonequilibrium crystal growth. Phys. Rev. E, 89(1), 2014, 012405.
38. Nisar, A., Ariharan, S., Venkateswaran, T., Sreenivas, N., Balani, K., Oxidation studies on TaC based ultra-high temperature ceramic composites under plasma arc jet exposure. Corros. Sci. 109 (2016), 50–61.
39. Matsushita, J., Takeuchi, K., High temperature oxidation of tantalum carbide (TaC) powder. J. Adv. Sci. 10 (1998), 100–102.
40. Desmaison-Brut, M., Alexandre, N., Desmaison, J., Comparison of the oxidation behavior of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) materials. J. Eur. Ceram. Soc. 17 (1997), 1325–1334.
41. Niu, Y., Pu, H., Huang, L., Zhao, J., Zheng, X., Microstructure and ablation property of TaC-SiC composite coatings. Key Eng. Mater. 697 (2016), 535–538.
42. Chen, Z., Xiong, X., Li, G., Wang, Y., Ablation behaviors of carbon-carbon composites with C-SiC-TaC. Appl. Surf. Sci. 17 (1997), 1325–1334.