Инд. авторы: Persikov E.S., Bukhtiyarov P.G., Sokol A.G.
Заглавие: Viscosity of haplokimberlitic and basaltic melts at high pressures: Experimental and theoretical studies
Библ. ссылка: Persikov E.S., Bukhtiyarov P.G., Sokol A.G. Viscosity of haplokimberlitic and basaltic melts at high pressures: Experimental and theoretical studies // Chemical Geology. - 2018. - Vol.497. - P.54-63. - ISSN 0009-2541. - EISSN 1878-5999.
Идентиф-ры: DOI: 10.1016/j.chemgeo.2018.08.021; РИНЦ: 35755275; SCOPUS: 2-s2.0-85052726231; WoS: 000445186400005;
Реферат: eng: Only limited data are available at present on the viscosity of kimberlite magmas. We investigate viscosity of synthetic carbonate-bearing (silicate82 + carbonate18, wt%, 100NBO/T = 313) anhydrous haplokimberlite melts theoretically and in experiments. We use new experimental data on viscosity of anhydrous haplokimberlite melts and a physical-chemical model (Persikov and Bukhtiyarov 2009; Persikov et al. 2015) to compare basic viscosity features in kimberlitic and basaltic melts (100NBO/T = 56). Viscosity of melts is determined by the falling sphere quenching method in a large range of temperatures from 1300 to 1950 degrees C and pressures up to 7.5 GPa. We use two types of high-pressure apparatuses: a high gas pressure apparatus and a high pressure split-sphere multi-anvil apparatus to study the viscosity of melts at moderate (100 MPa CO2 pressure) and high (5.5 GPa and 7.5 GPa) pressures, respectively. The measured viscosity ranges for anhydrous haplokimberlite melts are from 1.5 (+/- 0.45) to 0.11(+/- 0.03) Pa s. The temperature dependence of the viscosity of haplokimberlite and basaltic melts is consistent with the theoretical Arrhenian equation. At a constant temperature, viscosity of anhydrous haplokimberlite melts increases exponentially about ten-fold as pressure increases from 100 MPa to 7.5 GPa. The activation energy of viscous flow increases linearly with pressure increase from 100 MPa to 7.5 GPa for anhydrous haplokimberlite melts but decreases in the case of basaltic melts, with the minimum at similar to 5.5 GPa. At a moderate pressure (100 MPa), haplokimberlite melts are about twenty times less viscous than basaltic melts, but are about four times more viscous at a high pressure (7.5 GPa), the temperature being 1800 degrees C in both cases. The experimentally observed behavior of the viscosity of anhydrous haplokimberlite melts is consistent with predictions of the physical-chemical model within the range of uncertainties in both experimental and calculated data (+/- 30% rel.). Thus, the physical-chemical model is used to discuss possible effects of volume percentages of crystals and bubbles on viscosity of kimberlitic and basaltic magmas at different pressures and temperatures during their origin, evolution, and ascent.
Ключевые слова: SOLUBILITY; OLIVINE; RHEOLOGY; TEMPERATURE; MODEL; KIMBERLITE; 13 GPA; MAGMATIC SILICATE LIQUIDS; Sphere; Model; Haplokimberlite and basaltic melts; High temperatures and pressures; Activation energy; Viscosity; PERIDOTITE LIQUID; GENERATION;
Издано: 2018
Физ. хар-ка: с.54-63
Цитирование: 1. Adam, G., Gibbs, J.H., On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43 (1965), 139–146.
2. Allwardt, J.R., Stebbins, J.F., Terasaki, H., Du, L.S., Frost, D.J., Withers, A.C., Hirschmann, M.M., Suzuki, A., Ohtani, E., Effect of structural transitions on properties of high-pressure silicate melts: Al-27 NMR, glass densities, and melts viscosities. Am. Mineral. 92 (2007), 1093–1104.
3. Bockris, J.O’.M., Reddy, A.K.M., Modern Electrochemistry. 1970, Prenum Press, New York, 1.
4. Bottinga, Y., Weill, D.F., The viscosity of magmatic silicate liquids; a model calculation. Am. J. Science 272:5 (1972), 438–475.
5. Brearley, M., Dickinson, J.E. Jr., Scarfe, M., Pressure dependence of melt viscosities on the join diopside – albite. Geochim. Cosmochim. Acta 30 (1986), 2563–2570.
6. Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F., Structural controls on the solubility of CO2 in silicate melts. Part I: bulk solubility data. Chem. Geol. 174 (2001), 225–239.
7. Brush, S.G., Theories of liquid viscosity. Chem. Rev. 62:6 (1962), 513–548.
8. Carron, J.H., Vue d'ensemble sur la rheology des magmas silicates naturels. Bull. Soc. Fr. Minéral. Cristallogr. 92 (1969), 435–446.
9. Champallier, R., Bystricky, M., Arbaret, L., Experimental investigation of magma rheology at 300 MPa: from pure hydrous melt to 75 vol.% of crystals. Earth Planet. Sci. Lett. 267 (2008), 571–583.
10. Cohen, M.H., Turnbull, D., Molecular transport in liquids and glasses. J. Chem. Phys. 31 (1959), 1164–1169.
11. Dingwell, D.B., Copurtial, P., Giordano, D., Nichols, A.R.L., Viscosity of peridotite liquid. Earth Planet. Sci. Lett. 226 (2004), 127–138.
12. Frenkel, Ya.I., The Kinetic Theory of Liquids. 1975 Izd. AN SSSR. 415 pp. (in Russian).
13. Fujii, T., Kushiro, I., Density, viscosity, and compressibility of basaltic liquid at high pressures. Carnegie Inst. Year Book., 76, 1977, 419–424.
14. Giordano, D., Dingwell, D.B., Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208 (2003), 337–349.
15. Giordano, D., Romano, C., Papale, P., Dingwell, D.B., The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chem. Geol. 213:1–3 (2004), 49–61.
16. Giordano, D., Russel, J.K., Dingwell, D.B., Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271 (2008), 123–134.
17. Hack, A.C., Thompson, A.B., Density and viscosity of hydrous magmas and related fluids and their role in subduction zone processes. J. Petrol. 52:7–8 (2011), 1333–1362.
18. Hui, H., Zhang, Y., Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim. Cosmochim. Acta 71 (2007), 403–406.
19. Ishibashi, H., Sato, H., Viscosity measurements of subliquidus magmas: alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan. J. Volcanol. Geotherm. Res. 160 (2007), 223–238.
20. Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F.D., Mernagh, T.P., How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112S (2009), 334–346.
21. Kamenetsky, V.S., Yaxley, G.M., Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim. Cosmochim. Acta 158 (2015), 48–56.
22. Karki, B.B., Stixrude, L., Viscosity of MgSiO3 liquid at mantle conditions: implications for early magma ocean. Science 96 (2010), 740–742.
23. Kavanagh, J.L., Sparks, R.S.J., Temperature changes in ascending kimberlite magma. Earth Planet. Sci. Lett. 286 (2009), 404–413.
24. Kjarsgaard, B.A., Pearson, D.G., Tappe, S., Nowell, G.M., Dowall, D.P., Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112S (2009), 236–248.
25. Kono, Y., Kenney-Benson, C., Hummer, D., Ohfuji, H., Park, C., Shen, G., Wang, Y., Kavner, A., Manning, C.E., Ultralow viscosity of carbonate melts at high pressures. Nat. Commun., 5, 2014, 5091, 10.1038/ncomms6091.
26. Kopylova, M.G., Kostrovitsky, S.I., Egorov, K.N., Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts. Earth-Sci. Rev. 119 (2013), 1–16.
27. Kopylova, M.G., Matveev, S., Raudsepp, M., Searching for parental kimberlite melt. Geochim. Cosmochim. Acta 71 (2007), 3616–3629.
28. Kushiro, I., Changes in viscosity and structure of melt of NaAlSi2O6 composition at high pressures. J. Geophys. Res. 81 (1976), 6347–6350.
29. Kushiro, I., Viscosity, density and structure of silicate melts at high pressures, and their petrological applications. Hargraves, R.B., (eds.) Physics of Magmatic Processes, 1980, Princeton University Press, New Jersey, 93–120.
30. Lange, R.A., The effect of H2O, CO2, and F on the density and viscosity of silicate melts. Carrol, M.R., Holloway, J.R., (eds.) Reviews in Mineralogy. Volatiles in Magmas, 30, 1994, MSA, Washington, 331–369.
31. Le Maitre, R.W., The chemical variability of some common igneous rocks. J. Petrol. 17:4 (1976), 589–637.
32. Liebske, C., Schmickler, B., Terasaki, H., Poe, B.T., Suzuki, A., Funakoshi, K.I., Ando, R., Rubie, D.C., The viscosity of peridotite liquid at pressures up to 13 GPa. Earth Planet. Sci. Lett. 240 (2005), 589–604.
33. Marsh, B., On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78:1 (1981), 85–98.
34. McMillan, P.F., Wilding, M.C., High pressure effects on liquid viscosity and glass transition behaviour, polyamorphic phase transitions and structural properties of glasses and liquids. J. Non-Cryst. Solids 355 (2009), 722–732.
35. Michell, R.H., Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J. Volcanol. Geotherm. Res. 174 (2008), 1–8.
36. Moussallam, Y., Morizet, Y., Gaillard, F., H2O–CO2 solubility in low SiO2-melts and the unique mode of kimberlite degassing and emplacement. Earth Planet. Sci. Lett. 447 (2016), 151–160.
37. Mysen, B.O., Relation between structure, redox equilibria of iron, and properties of magmatic liquids. Perchuk, L.L., Kushiro, I., (eds.) Physical chemistry of Magmas. Adv. Phys. Geochem, 9, 1991, Springer-Verlag, New York, 41–98.
38. Neuville, D.R., Richet, P., Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets. Geochim. Cosmochim. Acta 55:4 (1991), 1011–1019.
39. Ni, H., Keppler, H., Carbon in Silicate Melts. Rev. Mineral. Geochem. 75 (2013), 251–287.
40. Pal, R., Rheological behavior of bubble-bearing magmas. Earth Planet. Sci. Lett. 207 (2003), 165–179.
41. Palyanov, Yu.N, Borzdov, Yu.M., Khokhryakov, A.F., Kupriyanov, I.N., Sokol, A.G., Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 10 (2010), 3169–3175.
42. Persikov, E.S., Viscosity of igneous melts. 1984, Nauka, Moscow 160 p., (in Russian).
43. Persikov, E.S., The viscosity of magmatic liquids: experiment, generalized patterns; a model for calculation and prediction; application. Perchuk, L.L., Kushiro, I., (eds.) Physical Chemistry of Magmas. Adv. Phys. Geochem, 9, 1991, Springer-Verlag, New York, 1–40.
44. Persikov, E.S., Viscosities of model and magmatic melts at the pressures and temperatures of the Earth's crust and upper mantle. Russ. Geol. Geophys. 39:12 (1998), 1780–1792.
45. Persikov, E.S., Bukhtiyarov, P.G., Unique gas high pressure apparatus to study fluid - melts and fluid - solid - melts interaction with any fluid composition at the temperature up to 1400 °C and at the pressures up to 5 kbars. J. Conf. Abs., 7(1), 2002, 85.
46. Persikov, E.S., Bukhtiyarov, P.G., Experimental study of the effect of lithostatic and aqueous pressures on viscosity of silicate and magmatic melts. A new structural-chemical model to calculate and predict the viscosity of such melts. Zharikov, V.A., Fedkin, V.V., (eds.) Experimental Mineralogy. Some Results on the Verge of a New Century, 1, 2004, Nauka, Moscow, 103–122 (in Russian).
47. Persikov, E.S., Bukhtiyarov, P.G., Interrelated structural chemical model to predict and calculate viscosity of magmatic melts and water diffusion in a wide range of compositions and T-P parameters of the Earth's crust and upper mantle. Russ. Geol. Geophys. 50:12 (2009), 1079–1090.
48. Persikov, E.S., Bukhtiyarov, P.G., Kalinicheva, T.V., Effect of composition, temperature and pressure of flowability of magmatic melts. Geochemistry 4 (1987), 483–498 (in Russian).
49. Persikov, E.S., Kushiro, I., Fujii, T., Bukhtiyarov, P.G., Kurita, K., Anomalous pressure effect on viscosity of magmatic melts. Phase Transformation at High Pressures and High Temperatures: Applications to Geophysical and Petrological Problems. Misasa: Tottori-Ken, 1989, DELP International Symposium, Japan, 28–30.
50. Persikov, E.S., Zharikov, V.A., Bukhtiyarov, P.G., Pol'skoy, S.F., The effect of volatiles on the properties of magmatic melts. Eur. J. Mineral. 2 (1990), 621–642.
51. Persikov, E.S., Bukhtiyarov, P.G., Sokol, A.G., Change in the viscosity of kimberlite and basaltic magmas during their origin and evolution (prediction). Russ. Geol. Geophys. 56 (2015), 883–892.
52. Persikov, E.S., Bukhtiyarov, P.G., Nekrasov, A.N., Sokol, A.G., Experimental study of the interaction between orthopyroxenes and carbonates at the moderate and high pressures. XVII-th International Conference on Physical-Chemical and Petrophysical Study in the Earth's Sciences, 2016, Nauka, Moscow, 261–264 (in Russian).
53. Persikov, E.S., Bukhtiyarov, P.G., Sokol, A.G., Viscosity of hydrous kimberlite and basaltic melts at high pressures. Russ. Geol. Geophys. 58 (2017), 1093–1100.
54. Pouchou, J.L., Pichoir, F., Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Quantitation, Probe, Heinrich, K.F.G., Newbury, D.E., (eds.) Electron, 1991, Plenum Press, New York, 31–76.
55. Reid, J.E., Suzuki, A., Funakoshi, K.I., Terasaki, H., Poe, B.T., Rubie, D.C., Ohtani, E., The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa. Phys. Earth Planet. Inter. 139 (2003), 45–54.
56. Richet, P., Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta 48 (1984), 471–483.
57. Russell, J.K., Giordano, D., Dingwell, D.B., High-temperature limits on viscosity of non-Arrhenian silicate melts. Am. Mineral. 88:8-9 (2003), 1390–1394.
58. Russell, J.K., Porritt, L.A., Lavallee, Y., Dingwell, D.B., Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481 (2012), 352–357.
59. Scarfe, G.M., Viscosity and density of silicate melts. Scarfe, G.M., (eds.) Silicate Melts, 12, 1986, Min. Assoc. Can. Short Course Handbook, 36–56.
60. Scarfe, C.M., Mysen, B.O., Virgo, D., Pressure dependence of the viscosity of silicate melts. Mysen, B.O., (eds.) Magmatic Processes: Physicochemical Principles, Vol. 1, 1987, Gheochem. Soc. Spec. Publ., 59–68.
61. Sharygin, I.S., Litasov, K.D., Shatskiy, A.F., Golovin, A.V., Ohtani, E., Pokhilenko, N.P., Melting of kimberlite of the Udachnaya-East pipe. Experimental study at 3-6.5 GPa and 900–1500 °C. Dokl. Earth Sci. 448:2 (2013), 200–205.
62. Shaw, H.R., Viscosities of magmatic silicate liquids: an empirical method of prediction. Amer. J. Sci. 272:11 (1972), 870–893.
63. Shaw, H.R., Wright, T.L., Peck, D.L., Okamura, R., The viscosity of basaltic magma: an analysis of field measurements in Makaopuhi lava lake, Hawaii. Amer. J. Sci. 266 (1968), 225–264.
64. Sokol, A.G., Kruk, A.N., Conditions of kimberlite magma generation: experimental constraints. Russ. Geol. Geophys. 56:1-2 (2015), 245–259.
65. Sokol, A.G., Kupriyanov, I.N., Palyanov, Y.N., Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400 °C: Implications for kimberlite formation. Earth Planet. Sci. Lett. 383 (2013), 58–67.
66. Sokol, A.G., Kupriyanov, I.N., Palyanov, Y.N., Kruk, A.N., Sobolev, N.V., Melting experiments on the Udachnaya kimberlite at 6.3–7.5 GPa: implications for the role of H2O in magma generation and formation of hydrous olivine. Geochim. Cosmochim. Acta 101 (2013), 133–155.
67. Sparks, R.S.J., Brooker, R.A., Field, M., Kavanagh, J., Schumacher, J.C., Walter, M.J., White, J., The nature of erupting kimberlite melts. Lithos 112S (2009), 429–438.
68. Suzuki, A., Ohtani, E., Terasaki, H., Funakoshi, K., Viscosity of silicate melts in CaMgSi2O6-NaALSi2O6 system at high pressure. Phys. Chem. Miner. 32 (2005), 140–145.
69. Uhira, K., Experimental study on the effect of bubble concentration on the effective viscosity of liquids. Bull. Earthquake Res. Inst. 56 (1980), 857–871.
70. Waff, H.S., Pressure-induced coordination changes in magmatic liquids. Geophys. Res. Lett. 2 (1975), 193–196.
71. Wolf, G.H., McMillan, P.F., Pressure effects on silicate melt structure and properties. Stebbins, J.F., et al. (eds.) Reviews in Mineralogy. Structure, Dynamics and Properties of Silicate Melts, 32, 1995, MSA, Washington, 505–561.
72. Wyllie, P.J., The origin of kimberlite. J. Geophys. Res. 85 (1980), 6902–6910.
73. Yoder, H.S. Jr., Generation of Basaltic Magmas. 1976, National Academy of Sciences, Washington, D.C, 265.