Инд. авторы: Котляров А.В., Симонов В.А., Сафонова И.Ю.
Заглавие: Бониниты - критерии геодинамического развития магматических систем в палеосубдукционных зонах горного алтая
Библ. ссылка: Котляров А.В., Симонов В.А., Сафонова И.Ю. Бониниты - критерии геодинамического развития магматических систем в палеосубдукционных зонах горного алтая // Геодинамика и тектонофизика. - 2018. - Т.9. - № 1. - С.39-58. - EISSN 2078-502X.
Идентиф-ры: DOI: 10.5800/GT-2018-9-1-0336.; РИНЦ: 35369221;
Реферат: eng: Ancient primary boninitic melts of the Gorny Altai (65-105 km, 1410-1590 °C) were studied from the composition of melt inclusions in clinopyroxenes. We estimated their parameters and the conditions for the onset of magma crystallization in an intermediate chamber at a depth of about 30-35 km, which appear similar to the reference boninitic magmatism of the modern Izu-Bonin island arc. A combined analysis of the composition of inclusions and clinopyroxenes from Gorny Altai boninites shows that within a range of minimum temperature values (1140-1120 °C), the crystallizing material continuously ascends from a depth of 12 to 0.6 km. The pattern is different in case of higher-temperature magmas, and three zones of pyroxene crystallization are distinguished: 18.0-13.8 km (1245-1205 °С), 12.0-3.5 km (1240-1185 °С), and 3.3-0.6 km (1185-1145 °С). Actually, these zones correspond to the intermediate deep-seated magmatic chambers typical of modern island-arc subduction zones [ Dobretsov et al., 2016 ]. Based on the detailed study of zonal phenocrysts of clinopyroxene in boninites from the Kuray ophiolites, we established the parameters of the evolution of the ascending boninite melts. Three temperature intervals (1220-1200 °С, 1235-1210 °С, and 1120-1220 °С) and three pressure ranges (1.5-11.5 kbar, 2.0-6.0 kbar, and 2.0-0.3 kbar) are distinguished. One case shows a significant pressure drop (from 11.5 to 1.5 kbar) with a small drop in temperature (from 1220 °C to 1200 °C). In the second case, the pressure rises from 2.0 to 6.0 kbar, and the crystallization temperature decreases from 1235 to 1210°C. In the third case, crystallization begins at a stable temperature (1120-1140 °C) and a stable pressure (1.4-2.0 kbar); then, in the near-surface conditions, the temperature increases to 1220 °C, and the pressure decreases sharply to 0.3 kbar.
rus: На основе данных по составу расплавных включений в клинопироксенах установлены параметры генерации древних первичных бонинитовых расплавов Горного Алтая (65-105 км, 1410-1590 °С), а также определены условия начала кристаллизации этих магм в промежуточной камере на глубине около 30-35 км, совпадающие с данными по эталонному бонинитовому магматизму современной Идзу-Бонинской островной дуги. Совместное использование состава включений и клинопироксенов из бонинитов Горного Алтая показало, что в одном случае при минимальных температурах (1140-1120 °С) происходил непрерывный подъем кристаллизующейся массы с глубины от 12 до 0.6 км. Для более высокотемпературных магм характерен другой путь - с выделением трех зон кристаллизации пироксенов на глубине 18.0-13.8 км (1245-1205 °С), 12.0-3.5 км (1240-1185 °С) и 3.3-0.6 км (1185-1145 °С), фактически соответствующих промежуточным разноглубинным магматическим камерам, характерным для современных островодужных зон субдукции [ Dobretsov et al., 2016 ]. В результате детальных исследований зональных вкрапленников клинопироксена из бонинитов Курайских офиолитов были установлены параметры эволюции двигающихся вверх бонинитовых расплавов. Выделяются три температурных интервала (1220-1200 °С, 1235-1210 °С и 1120-1220 °С) и три диапазона давлений (1.5-11.5 кбар, 2-6 кбар и 2.0-0.3 кбар). В одном случае установлено существенное падение давления от 11.5 до 1.5 кбар при незначительном снижении температуры от 1220 °С до 1200 °С. В другом случае идет повышение давления от 2 до 6 кбар и снижение температуры кристаллизации от 1235 до 1210 °С. В третьем случае в начале для процессов кристаллизации характерны устойчивые значения температур (1120-1140 °С) и давлений (1.4-2.0 кбар), далее в приповерхностных условиях происходит рост температуры до 1220 °С с резким падением давления до 0.3 кбар.
Ключевые слова: расплавные включения; зона субдукции; магматическая система; геодинамический процесс; PT-conditions; melt inclusions; Subduction zone; magmatic system; geodynamic process; клинопироксены; бониниты; clinopyroxene; boninite; PT-условия;
Издано: 2018
Физ. хар-ка: с.39-58
Цитирование: 1. Ashchepkov I.V., 2001. Clinopyroxene Jd barometer for mantle peridotites and eclogites and thermal conditions of the lithospheric keels of cratons and their surroundings. In: A geo odyssey. GSA Annual Meeting, November 1-10, 2001, Boston, Abstract ID 11658.
2. Buslov M.M., Bersin N.A., Dobretsov N.L., Simonov V.A., 1993. Geology and Tectonics of Gorny Altai. Novosibirsk: UIGGM SB RAS, 122 p.
3. Buslov M.M., Geng H., Travin A.V., Otgonbaatar D., Kulikova A.V., Ming C., Stijn G., Semakov N.N., Rubanova E.S., Abildaeva M.A., Voitishek, E.E., Trofimova D.A., 2013. Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russian Geology and Geophysics 54 (10), 1250-1271. https://doi.org/10.1016/j.rgg.2013.09.009.
4. Crawford A.J., Fallon T.J., Green D.H., 1989. Classification, petrogenesis and tectonic setting of boninites. In: A.J. Crawford (Ed.), Boninites. Unwin Hyman, London, p. 2-44.
5. Danyushevsky L.V., Plechov P., 2011. Petrolog3: Integrated software for modeling crystallization processes. Geochemistry, Geophysics, Geosystems 12 (7), Q07021. https://doi.org/10.1029/2011GC003516.
6. Danyushevsky L.V., Sobolev A.V., 1987. New data on petrology of boninites of Tonga. Geologiya i Geofizika (Soviet Geology and Geophysics) 28 (12), 100-103
7. Dobretsov N.L., 1985. A model for the East Sayan nappe tectonics. Geotektonika (Geotectonics) (1), 39-50
8. Dobretsov N.L., Konnikov E.G., Sklyarov E.V., Medvedev V.N., 1986. Marianite-boninite series and evolution of ophiolite magmatism of East Sayan. Geologiya i Geofizika (Soviet Geology and Geophysics) (12), 29-35
9. Dobretsov N.L., Simonov V.A., Buslov M.M., Kotlyarov A.V., 2005. Magmatism and geodynamics of the Paleoasian ocean at the Vendian-Cambrian stage of its evolution. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (9), 933-951.
10. Dobretsov N.L., Simonov V.A., Buslov M.M., Kurenkov S.A., 1992. Oceanic and island-arc ophiolites of Gorny Altai. Geologiya i Geofizika (Russian Geology and Geophysics) (12), 3-14
11. Dobretsov N.L., Simonov V.A., Kotlyarov A.V., Kulakov R.Y., Karmanov N.S., 2016. Physicochemical parameters of crystallization of melts in intermediate suprasubduction chambers (by the example of Tolbachik and Ichinskii Volcanoes, Kamchatka Peninsula). Russian Geology and Geophysics 57 (7), 993-1015. https://doi.org/10.1016/j.rgg.2016.06.001.
12. Dobretsov N.L., Simonov V.A., Koulakov I.Y., Kotlyarov A.V., 2017. Migration of fluids and melts in subduction zones and general aspects of thermophysical modeling in geology. Russian Geology and Geophysics 58 (5), 571-585. https://doi.org/10.1016/j.rgg.2016.09.028.
13. Govorov I.N. (Ed.), 1991. Geology and Petrology of the Zones of Deepwater Troughs in the West Pacific. Nauka, Moscow, 260 p. (in Russian) [Геология и петрология зон глубоководных желобов запада Тихого океана / Ред. И.Н. Говоров. М.: Наука, 1991. 260 с.].
14. Khain E.V., Bibikova E.V., Kröner A., Zhuravlev D.Z., Sklyarov E.V., Fedotova A.A., Kravchenko-Berezhnoy I.R., 2002. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letters 199 (3-4), 311-325. https://doi.org/10.1016/S0012-821X(02)00587-3.
15. Koulakov I.Y., Kukarina E.V., Gordeev E.I., Chebrov V.N., Vernikovsky V.A., 2016. Magma sources in the mantle wedge beneath the volcanoes of the Klyuchevskoy group and Kizimen based on seismic tomography modeling. Russian Geology and Geophysics 57 (1), 82-94. https://doi.org/10.1016/j.rgg.2016.01.006.
16. Kulikova A.V., Buslov M.M., Travin A.V., 2017. Geochronology of the metamorphic rocks in the Kurai accretionary prism (South-Eastern Gorny Altai). Geodynamics & Tectonophysics 8 (4), 1049-1063
17. Kurenkov S.A., Didenko A.N., Simonov V.A., 2002. Geodynamics of Paleospreading. GEOS, Moscow, 294 p.
18. Kuzmichev A.B., 2004. Tectonic History of the Tuva-Mongolian Massif: Early Baikalian, Late Baikalian and Early Caledonian Stages. Probel-2000, Moscow, 192 p.
19. Kuznetsov P.P., Simonov V.A., 1976. Some features of the structure of the Chaganuzun hyperbasite massif (Gorny Altai). Geologiya i Geofizika (Soviet Geology and Geophysics) (7), 102-105
20. Peive A.V. (Ed.), 1980. Geology of the Philippine Sea Bottom. Nauka, Moscow, 261 p.
21. Perchuk L.L., 1980. Pyroxene barometer and pyroxene geotherms. Doklady AN SSSR 233 (6), 1196-2000
22. Schilling J.-G., Ruppel C., Davis A.N., McCully B., Tighe S.A., Kingsley R.H., Lin J., 1995. Thermal structure of the mantle beneath the equatorial Mid-Atlantic Ridge: Influences from the spatial variation of dredged basalt glass compositions. Journal of Geophysical Research: Solid Earth 100 (B6), 10057-10076. https://doi.org/10.1029/95JB00668.
23. Sharas’kin A.Ya., 1992. Tectonics and Magmatism of Marginal Seas in Connection with the Problems of the Evolution of the Crust and Mantle. Nauka, Moscow, 163 p.
24. Simonov V.A., 1993. Petrogenesis of Ophiolites (Thermobarogeochemical Studies). Publishing House of the Institute of Geology, Geophysics and Mineralogy SB RAS, Novosibirsk, 247 p.
25. Simonov V.A., Al’mukhamedov A.I., Gibsher A.S., Medvedev A.Ya., Kovyazin S.V., 2001. Physicochemical conditions of formation of boninites from ophiolites of Mongolia (data on melt inclusions). In: The 7th International L.P. Zonenshain conference on plate tectonics. Nauchny Mir, Moscow, p. 65-66
26. Simonov V.A., Al’mukhamedov A.I., Kovyazin S.V., Medvedev A.Y., Tikunov Y.V., 2004. Conditions of petrogenesis of boninites in ophiolites of the Dzhida zone, Northern Mongolia (from data on melt inclusions). Geologiya i Geofizika (Russian Geology and Geophysics) 45 (6), 651-662.
27. Simonov V.A., Dobretsov N.L., Buslov M.M., 1994. Boninite series in structures of the Paleo-Asian Ocean. Geologiya i Geofizika (Russian Geology and Geophysics) 35 (7-8), 182-199
28. Simonov V.A., Kotlyarov A.V., Stupakov S.I., 2016. Conditions for the formation of boninites in the paleo island arc complexes of Gorny Altai. In: Geodynamic evolution of the lithosphere of the Central Asian Mobile Belt (from ocean to continent). Issue 14. Institute of the Earth’s Crust SB RAS, Irkutsk, p. 265-267
29. Simonov V.A., Kurenkov S.A., Stupakov S.I., 1998. Boninite series in the paleospreading complexes of the Polar Urals. Doklady Earth Sciences 361 (5), 681-684.
30. Simonov V.A., Kurenkov S.A., Stupakov S.I., Kovyazin S.V., Kireev A.D., 1996. Features of boninitic and shoshonitic series in paleo-islan-arc associations of Gorny Altai and the Polar Urals. In: Problems of geology of Siberia. Vol. 2. Tomsk State University, Tomsk, p. 47
31. Simonov V.A., Kuznetsov P.P., 1991. Boninites in the Vendian-Cambrian ophiolites of Gorny Altai. Doklady AN SSSR 316 (2), 448-451
32. Simonov V.A., Sklyarov E.V., Kovyazin S.V., Perelyaev V.I., 2006. Physicochemical parameters of the oldest boninite melts. Doklady Earth Sciences 408 (1), 667-670. https://doi.org/10.1134/S1028334X06040350.
33. Sklyarov E.V., Kovach V.P., Kotov A.B., Kuzmichev A.B., Lavrenchuk A.V., Perelyaev V.I., Shchipansky A.A., 2016. Boninites and ophiolites: Problems of their relations and petrogenesis of boninites. Russian Geology and Geophysics 57 (1), 127-140. https://doi.org/10.1016/j.rgg.2016.01.009.
34. Sklyarov E.V., Simonov V.A., Buslov M.M., 1994. Ophiolites of the Southern Siberia and Nothern Mongolia. In: R.G. Coleman (Ed.), Reconstruction of the Paleo-Asian ocean. VCP International Science Publishers, Utrecht, Netherlands, p. 85-98.
35. Sobolev A.V., 1997. Problems of Formation and Evolution of Mantle Magmas. Brief PhD Thesis (Doctor of Geology and Mineralogy). Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, Moscow, 50 p.
36. Sobolev A.V., Danyushevsky L.V., 1994. Petrology and geochemistry of boninites from the north termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas. Journal of Petrology 35 (5), 1183-1211. https://doi.org/10.1093/petrology/35.5.1183.
37. Sobolev A.V., Slutskii A.B., 1984. Composition and crystallization conditions of the initial melt of the Siberian meimechites in relation to the general problem of ultrabasic magmas. Geologiya i Geofizika (Soviet Geology and Geophysics) (12), 97-110
38. Tarney J., March N.G., 1991. Major and trace element geochemistry of Holes CY-1 and CY-4: Implications for petrogenetic models. In: I.L. Gibson (Ed.), Cyprus crustal study project: initial report, Holes CY-1 and 1a. Geological Survey of Canada Paper, No. 90-20, p. 133-175.
39. Zonenshain L.P., Kuzmin M.I., 1978. Khan-Taishir ophiolites in Western Mongolia and problems of ophiolite formation. Geotektonika (Geotectonics) (1), 19-42