Инд. авторы: Кирдяшкин А.Г., Кирдяшкин А.А.
Заглавие: Гидродинамика и тепломассообмен в грибообразной голове термохимического плюма
Библ. ссылка: Кирдяшкин А.Г., Кирдяшкин А.А. Гидродинамика и тепломассообмен в грибообразной голове термохимического плюма // Геодинамика и тектонофизика. - 2018. - Т.9. - № 1. - С.263-286. - EISSN 2078-502X.
Идентиф-ры: DOI: 10.5800/GT-2018-9-1-0348.; РИНЦ: 35369234;
Реферат: rus: Описана модель мантийного термохимического плюма, и представлена схема его зарождения на границе ядро-мантия. Приведены основные соотношения для определения тепловой мощности термохимического плюма и диаметра его канала. Плюмы с грибообразной головой имеют относительную тепловую мощность 1.9р=1410 °C и T р=1380 °C. Расчеты толщины слоя остаточного расплава проведены для Хэнтэйского плюма, у которого толщина головы l = d =29 км ( d - диаметр канала плюма). На основе предложенной модели плюма с грибообразной головой в результате расчетов может быть получен нормативный состав расплава, близкий к составу нормальных гранитов.
eng: The model of a thermochemical mantle plume is described. The scheme of origination of the plume from the core-mantle boundary is presented. The basic ratios for determining the thermal power and the diameters of thermochemical plumes are given. After eruption of the melt from the plume conduit to the surface, melting occurs along the base of the crustal block above the plume roof, resulting in the formation of a mushroom-shaped head of the plume, which means that a large intrusive body (deep-rooted batholith) is formed. The relative thermal power of such plumes is 1.9melt=1410 °C and Tmelt=1380 °C. The thickness of the residual melt is estimated for the case of the Khentei plume. Its head’s thickness ( l ) is equal to the plume conduit diameter ( d ): l = d =29 km. The proposed model of the plume with the mushroom-shaped head was used to calculate the normative composition of the melt with a chemical composition similar to that of normal granites.
Ключевые слова: батолит; голова плюма; объем расплава; Канал плюма; расплав; тепловая мощность; Термохимический плюм; granite; batholith; Plume head; Melt volume; Plume conduit; melt; thermal power; Thermochemical plume; нормативный состав; normative composition; гранит;
Издано: 2018
Физ. хар-ка: с.263-286
Цитирование: 1. Bowen N.L., 1913. The melting phenomena of the plagioclase feldspars. American Journal of Science 35 (210), 577-599. https://doi.org/10.2475/ajs.s4-35.210.577.
2. Brandon A.D., Walker R.J., 2005. The debate over core-mantle interaction. Earth and Planetary Science Letters 232 (3-4), 211-225. https://doi.org/10.1016/j.epsl.2005.01.034.
3. Brown M., 2013. Granite: from genesis to emplacement. Geological Society of America Bulletin 125 (7-8), 1079-1113. https://doi.org/10.1130/B30877.1.
4. Brückner R., 2003. Silicon dioxide. In: G.L. Trigg (Ed.), Encyclopedia of Applied Physics. Wiley, New York, p. 101-131. https://doi.org/10.1002/3527600434.eap432.
5. Cranmer D., Uhlmann D.R., 1981. Viscosities in the system albite-anorthite. Journal of Geophysical Research: Solid Earth 86 (B9), 7951-7956. https://doi.org/10.1029/JB086iB09p07951.
6. Cross W., Iddings J.P., Pirsson L.V., Washington H.S., 1902. A quantitative chemicomineralogical classification and nomenclature of igneous rocks. The Journal of Geology 10 (6), 555-690. https://doi.org/10.1086/621030.
7. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Vernikovsky V.A., Gladkov I.N., 2008. Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 100 (1-4), 66-92. https://doi.org/10.1016/j.lithos.2007.06.025.
8. Dobretsov N.L., Kirdyashkin A.G., 2000. Sources of mantle plumes. Doklady Earth Sciences 373 (5), 879-881.
9. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A., 2001. Deep Geodynamics. Siberian Branch of RAS Publishing House, Geo Branch, Novosibirsk, 408 p.
10. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A., 2005. Parameters of hot spots and thermochemical plumes. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (6), 589-602.
11. Frye K. (Ed.), 1983. The Encyclopedia of Mineralogy. Springer, Berlin, 794 p.
12. Gladkov I.N., Distanov V.E., Kirdyashkin A.A., Kirdyashkin A.G., 2012. Stability of a melt/solid interface with reference to a plume channel. Fluid Dynamics 47 (4), 433-447. https://doi.org/10.1134/S0015462812040023.
13. Gramenitsky E.N., Kotelnikov A.R., Batanova A.M., Shchekina T.I., Plechov P.Yu., 2000. Experimental and Technological Petrology. Nauchnyi Mir, Moscow, 416 p.
14. Jaupart C., Mareschal J.-C., 2007. Heat flow and thermal structure of the lithosphere. In: G. Schubert (Ed.), Treatise on geophysics. Vol. 6. Crust and lithosphere dynamics. Elsevier, p. 217-251. https://doi.org/10.1016/B978-044452748-6.00104-8.
15. Jaupart C., Mareschal J.-C., 2014. Constraints on crustal heat production from heat flow data. In: H. Holland, K. Turekian (Eds.), Treatise on geochemistry (Second Edition). Vol. 4. The crust. Elsevier, p. 53-73. https://doi.org/10.1016/B978-0-08-095975-7.00302-8.
16. Johannes W., 1984. Beginning of melting in the granite system Qz-Or-Ab-An-H2O. Contributions to Mineralogy and Petrology 86 (3), 264-273. https://doi.org/10.1007/BF00373672.
17. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2004. Thermochemical plumes. Geologiya i Geofizika (Russian Geology and Geophysics) 45 (9), 1005-1024.
18. Kirdyashkin A.A., Kirdyashkin A.G., 2016. On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface. Geotectonics 50 (2), 209-222. https://doi.org/10.1134/S0016852116020059.
19. Kirdyashkin A.A., Kirdyashkin A.G., Distanov V.E., Gladkov I.N., 2016. Geodynamic regimes of thermochemical mantle plumes. Russian Geology and Geophysics 57 (6), 858-867. https://doi.org/10.1016/j.rgg.2016.05.003.
20. Kirdyashkin A.A., Kirdyashkin A.G., Gurov V.V., 2017. Parameters of thermochemical plumes responsible for the formation of batholiths: results of experimental simulation. Geotectonics 51 (4), 398-411. https://doi.org/10.1134/S0016852117040057.
21. Kirdyashkin A.G., Kirdyashkin A.A., 2016. Parameters of plumes of North Asia. Russian Geology and Geophysics 57 (11), 1535-1550. https://doi.org/10.1016/j.rgg.2016.10.002.
22. Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A., 2010. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth-Science Reviews 102 (1-2), 29-59. https://doi.org/10.1016/j.earscirev.2010.06.004.
23. Larsen E.S., 1929. The temperatures of magmas. American Mineralogist 14, 81-94.
24. Luth W.C., Jahns R.H., Tuttle O.F., 1964. The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research 69 (4), 759-773. https://doi.org/10.1029/JZ069i004p00759.
25. Maaløe S., Wyllie P.J., 1975. Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions. Contributions to Mineralogy and Petrology 52 (3), 175-191. https://doi.org/10.1007/BF00457293.
26. Marsh B.D., 1981. On the crystallinity, probability of occurrence and rheology of lava and magma. Contributions to Mineralalogy and Petrology 78 (1), 85-98. https://doi.org/10.1007/BF00371146.
27. Maruyama S., 1994. Plume tectonics. Journal of the Geological Society of Japan 100 (1), 24-49. https://doi.org/10.5575/geosoc.100.24.
28. Nekrasov B.V., 1973. Fundamentals of General Chemistry. Vol. 1. Khimiya Publishing House, Leningrad, 656 p. (in Russian) [Некрасов Б.В. Основы общей химии. Т. 1. Л.: Изд-во «Химия», 1973. 656 с.].
29. Pabst W., Gregorová E., 2013. Elastic properties of silica polymorphs - a review. Ceramics - Silikáty 57 (3), 167-184.
30. Persikov E.S., 1984. The Viscosity of Magmatic Melts. Nauka, Moscow, 160 p. (in Russian) [Персиков Э.С. Вязкость магматических расплавов. М.: Наука, 1984. 160 с.].
31. Saranchina G.M., Shinkarev N.F., 1967. Petrography of Magmatic and Metamorphic Rocks. Nedra, Leningrad, 324 p.
32. Sobolev V.S., 1986. Petrology of Traps. Nauka, Novosibirsk, 209 p.
33. Tuttle O.F., Bowen N.L., 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. In: Geological Society of America Memoirs, vol. 74, p. 1-146. https://doi.org/10.1130/MEM74-p1.
34. Vertushkov G.N., Avdonin V.N., 1992. Tables for Mineral Determination Based on Chemical and Physical Properties: A Handbook. Nedra, Moscow, 489 p.
35. Vogt P.R., 1979. Global magmatic episodes: new evidence and implications for the steady-state mid-oceanic ridge. Geology 7 (2), 93-98. https://doi.org/10.1130/0091-7613(1979)7<93:GMENEA>2.0.CO;2.
36. Voitkevich G.V., Kokin A.V., Miroshnikov A.E., Prokhorov V.G., 1990. Geochemistry Reference Book. Nedra, Moscow, 480 p.
37. Walzer U., Hendel R., Baumgardner J., 2004. The effects of a variation of the radial viscosity profile on mantle evolution. Tectonophysics 384 (1-4), 55-90. https://doi.org/10.1016/j.tecto.2004.02.012.
38. Whitney J.A., 1988. The origin of granite: the role and source of water in the evolution of granitic magmas. Geological Society of America Bulletin 100 (12), 1886-1897. http://dx.doi.org/10.1130/0016-7606(1988)100%3C1886:TOOGTR%3E2.3.CO;2.
39. Winter J.D., 2014. Principles of Igneous and Metamorphic Petrology. Harlow, Pearson, 739 p.
40. Zonenshain L.P., Kuzmin M.I., Bocharova N.Yu., 1991. Hot-field tectonics. Tectonophysics 199 (2-4), 165-192. https://doi.org/10.1016/0040-1951(91)90171-N.