Инд. авторы: Sokolova T.S., Dorogokupets P.I., Litasov K.D., Danilov B.S., Dymshits A.M.
Заглавие: Spreadsheets to calculate P-V-T relations, thermodynamic and thermoelastic properties of silicates in the MgSiO3-MgO system
Библ. ссылка: Sokolova T.S., Dorogokupets P.I., Litasov K.D., Danilov B.S., Dymshits A.M. Spreadsheets to calculate P-V-T relations, thermodynamic and thermoelastic properties of silicates in the MgSiO3-MgO system // High Pressure Research. - 2018. - Vol.38. - Iss. 3. - P.193-211. - ISSN 0895-7959. - EISSN 1477-2299.
Идентиф-ры: DOI: 10.1080/08957959.2018.1465056; РИНЦ: 35759248; SCOPUS: 2-s2.0-85046444443; WoS: 000438637800001;
Реферат: eng: Modified equations of state (EoS) of forsterite, wadsleyite, ringwoodite, akimotoite, bridgmanite and post-perovskite based on the Helmholtz free energy are described using Microsoft Excel spreadsheets. The equations of state were set up by joint analysis of reference experimental data and can be used to calculate thermodynamic and thermoelastic parameters and P-V-T properties of the Mg-silicates. We used Visual Basic for Applications module in Microsoft Excel and presented a simultaneous calculation of full set of thermodynamic and thermoelastic functions using only T-P and T-V data as input parameters. Phase transitions in the MgSiO3-MgO system play an important role in the interpretation of the seismic boundaries of the upper Earth's mantle and in the D layer. Therefore, proposed EoSes of silicates in the MgSiO3-MgO system have clear geophysical implications. The developed software will be interesting to specialists who are engaged to study the mantle mineralogy and Earth's interior.
Ключевые слова: silicates; Helmholtz free energy; mantle; excel spreadsheets; EQUATION-OF-STATE; SINGLE-CRYSTAL FORSTERITE; POST-PEROVSKITE PHASE; X-RAY-DIFFRACTION; TEMPERATURE HEAT-CAPACITIES; HIGH-PRESSURE; ELASTIC PROPERTIES; GRUNEISEN-PARAMETER; SEISMIC DISCONTINUITY; LOWER MANTLE; Equation of state;
Издано: 2018
Физ. хар-ка: с.193-211
Цитирование: 1. Dorogokupets PI, Dymshits AM, Sokolova TS, et al. The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130 GPa. Rus Geol Geophys. 2015;56(1–2):172–189. doi:10.1016/j.rgg.2015.01.011.
2. Ringwood AE., Composition and petrology of the Earth’s mantle. New York (NY): McGrawHill; 1975.
3. Bina CR, Helffrich G., Geophysical constraints on mantle composition. In: Holland HD, Turekian KK, editor. Treatise on geochemistry: 2nd ed. Oxford: Elsevier Inc; 2014. p. 41–65.
4. Murakami M, Hirose K, Kawamura K, et al. Post-perovskite phase transition in MgSiO3. Science. 2004;304(5672):855–858. doi:10.1126/science.1095932.
5. Oganov AR, Ono S., Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth’s D″ layer. Nature. 2004;430(6998):445–448. doi:10.1038/nature02701.
6. Tsuchiya T, Tsuchiya J, Umemoto K, et al. Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet Sci Lett. 2004;224(3–4):241–248. doi:10.1016/j.epsl.2004.05.017.
7. Dorogokupets PI, Sokolova TS, Dymshits AM, et al. Thermodynamic properties of rock-forming oxides, α-Al2O3, Cr2O3, α-Fe2O3, and Fe3O4 at high temperatures and pressures. Geodynam Tectonophys. 2016;7(3):459–476. doi:10.5800/GT-2016-7-3-0217.
8. Litasov KD, Sharygin IS, Shatskii AF, et al. P-V-T equations of state for iron carbides Fe3C and Fe7C3 and their relationships under the conditions of the earth’s mantle and core. Doklady Earth Sci. 2013;453(2):1269–1273. doi:10.1134/S1028334X13120192.
9. Sokolova TS, Dorogokupets PI, Litasov KD., Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2–NaCl as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Rus Geol Geophys. 2013;54(2):181–199. doi:10.1016/j.rgg.2013.01.005.
10. Sokolova TS, Dorogokupets PI, Dymshits AM, et al. Microsoft excel spreadsheets to calculate P-V-T relations and thermodynamic properties from equations of state of nine metals, MgO and diamond used as pressure markers in high-pressure and high-temperature experiments. Comp Geos. 2016;94:162–169. doi:10.1016/j.cageo.2016.06.002.
11. Dziewonski AM, Anderson DL., Preliminary reference earth model. Phys Earth Planet Inter. 1981;25(4):297–356. doi:10.1016/0031-9201(81)90046-7.
12. Kunc K, Loa I, Syassen K., Equation of state and phonon frequency calculations of diamond at high pressures. Phys Rev B. 2003;68:094107. doi:10.1103/PhysRevB.68.094107.
13. Vinet P, Ferrante J, Rose JH, et al. Compressibility of solids. J Geophys Res. 1987;92:9319–9325. doi: 10.1029/JB092iB09p09319
14. Birch F., Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J Geophys Res Solid Earth. 1978;83(B3):1257–1268. doi: 10.1029/JB083iB03p01257
15. Zharkov VN, Kalinin VA., Equations of state for solids at high pressures and temperatures. New York (NY): Consuitants Bureau; 1971.
16. Al’tshuler LV, Brusnikin SE, Kuz’menkov EA., Isotherms and Gruneisen functions of 25 metals. J Appl Mech Tech Phys. 1987;28(1):129–141. doi:10.1007/BF00918785.
17. Dorogokupets PI, Dewaele A., Equations of state of MgO, Au, Pt, NaCl-B1 and NaCl-B2: internally consistent high-temperature pressure scales. High Pres Res. 2007;27:431–446. doi:10.1080/08957950701659700.
18. Dorogokupets PI, Oganov AR., Equations of state of Al, Au, Cu, Pt, Ta, and W and revised ruby pressure scale. Dokl Earth Sci. 2006;410:1091–1095. doi: 10.1134/S1028334X06070208
19. Dorogokupets PI, Oganov AR., Ruby, metals, and MgO as alternative pressure scales: a semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Phys Rev B. 2007;75:024115. doi:10.1103/PhysRevB.75.024115.
20. Dorogokupets PI, Dymshits AM, Litasov KD, et al. Thermodynamics and equations of state of iron to 350 GPa and 6000K. Scientific Rep. 2017;7:41863. doi:10.1038/srep41863.
21. Lee C-TA., Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. J Geophys Res. 2003;108(B9):9441. doi:10.1029/2003JB002413.
22. Li B, Libermann C, Weidner DJ., P-V-Vp-Vs-T measurements on wadsleyite to 7 GPa and 873 K: implications for the 410-km seismic discontinuity. J Geophys Res. 2001;106(B12):30575–30591.
23. Sinogeikin SV, Bass JD, Katsura T., Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity. Phys Earth Planet Inter. 2003;136:41–46. doi:10.1016/S0031-9201(03)00022-0.
24. Zhou C, Gréaux S, Nishiyama N, et al. Sound velocities measurement on MgSiO3 akimotoite at high pressures and high temperatures with simultaneous in situ X-ray diffraction and ultrasonic study. Phys Earth Planet Inter. 2014;228:97–105. doi:10.1016/j.pepi.2013.06.005.
25. Li B, Zhang J., Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle. Phys Earth Planet Inter. 2005;151:143–154. doi:10.1016/j.pepi.2005.02.004.
26. Robie RA, Hemingway BS, Takei H., Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380K. Amer Mineral. 1982;67:470–482.
27. Gillet P, Richet P, Guyot F, et al. High-temperature thermodynamic properties of forsterite. J Geophys Res Solid Earth. 1991;96(B7):11805–11816. doi:10.1029/91JB00680.
28. Chase MW., NIST-JANAF thermochemical tables. 4th ed New York (NY): American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology; 1998.
29. Dachs E, Geiger CA, von Seckendorff V, et al. A low-temperature calorimetric study of synthetic (forsterite + fayalite){(Mg2SiO4 + Fe2SiO4)} solid solutions: an analysis of vibrational, magnetic, and electronic contributions to the molar heat capacity and entropy of mixing. J Chem Thermodynam. 2007;39(6):906–933. doi:10.1016/j.jct.2006.11.009.
30. Kojitani H, Oohata M, Inoue T, et al. Redetermination of high-temperature heat capacity of Mg2SiO4 ringwoodite: measurement and lattice vibrational model calculation. Amer Mineral. 2012;97(8–9):1314–1319. doi:10.2138/am.2012.4054.
31. Suzuki I, Anderson OL, Sumino Y., Elastic properties of a single-crystal forsterite Mg2SiO4, up to 1200K. Phys Chem Miner. 1983;10(1):38–46. doi: 10.1007/BF01204324
32. Matsui T, Manghnani MH., Thermal expansion of single-crystal forsterite to 1023K by Fizeau interferometry. Phys Chem Miner. 1985;12(4):201–210. doi:10.1007/BF00311289.
33. Isaak DG, Anderson OL, Goto T, et al. Elasticity of single-crystal forsterite measured to 1700K. J Geophys Res Solid Earth. 1989;94(B5):5895–5906. doi:10.1029/JB094iB05p05895.
34. Trots DM, Kurnosov A, Ballaran TB, et al. High-temperature structural behaviors of anhydrous wadsleyite and forsterite. Amer Mineral. 2012;97(10):1582–1590. doi:10.2138/am.2012.3992.
35. Sumino Y, Nishizawa O, Goto T, et al. Temperature variation of elastic constants of single-crystal forsterite between –190 and 400°C. J Phys Earth. 1977;25(4):377–392. doi: 10.4294/jpe1952.25.377
36. Downs RT, Zha C-S, Doffy TS, et al. The equation of state of forsterite to 17.2 GPa and effects of pressure media. Amer Mineral. 1996;81:51–55. doi: 10.2138/am-1996-1-207
37. Bouhifd MA, Andrault D, Fiquet G, et al. Thermal expansion of forsterite up to the melting point. Geophys Res Lett. 1996;23(10):1143–1146. doi: 10.1029/96GL01118
38. Zhang L., Single crystal hydrostatic compression of (Mg,Mn,Fe,Co)2SiO4 olivines. Phys Chem Miner. 1998;25:308–312. doi:10.1007/s002690050119.
39. Couvy H, Chen J, Drozd V., Compressibility of nanocrystalline forsterite. Phys Chem Miner. 2010;37:343–351. doi:10.1007/s00269-009-0337-8.
40. Jacobs MHG, de Jong BHWS., An investigation into thermodynamic consistency of data for the olivine, wadsleyite and ringwoodite form of (Mg,Fe)2SiO4. Geochim Cosmochim Act. 2005;69(17):4361–4375. doi:10.1016/j.gca.2005.05.002.
41. Akaogi M, Takayama H, Kojitani H, et al. Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α–β–γ and post-spinel phase relations at high pressure. Phys Chem Miner. 2007;34(3):169–183. doi:10.1007/s00269-006-0137-3.
42. Suzuki I, Ohtani E, Kumazawa M., Thermal expansion of modified spinel, β-Mg2SiO4. J Phys Earth. 1980;28:273–280. doi: 10.4294/jpe1952.28.273
43. Mayama N, Suzuki I, Saito T, et al. Temperature dependence of elastic moduli of β-(Mg,Fe)2SiO4. Geophys Res Lett. 2004;31(4):L04612. doi:10.1029/2003GL019247.
44. Isaak DG, Gwanmesia GD, Falde D, et al. The elastic properties of β-Mg2SiO4 from 295 to 660K and implications on the composition of earth’s upper mantle. Phys Earth Planet Inter. 2007;162(1–2):22–31. doi:10.1016/j.pepi.2007.02.010.
45. Holl CM, Smyth JR, Jacobsen SD, et al. Effects of hydration on the structure and compressibility of wadsleyite, β-(Mg2SiO4). Amer Mineral. 2008;93:598–607. doi:10.2138/am.2008.2620.
46. Katsura T, Shatskiy A, Manthilake GM, et al. P-V-T relations of wadsleyite determined by in situ X-ray diffraction in a large-volume high-pressure apparatus. Geophys Res Lett. 2009;36:L11307. doi:10.1029/2009GL038107.
47. Watanabe H., Thermochemical properties of synthetic high-pressure compounds relevant to the earth’s mantle. In: Manghnani MH, Akimoto S, editor. High-pressure research in geophysics. Japan: Centre for Academic Publications; 1982. p. 441–464.
48. Chopelas A, Boehler R, Ko T., Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: implications for Mg2SiO4 phase equilibrium. Phys Chem Miner. 1994;21:351–359. doi:10.1007/BF00203293.
49. Suzuki I, Ohtani E, Kumazawa M., Thermal expansion of γ-Mg2SiO4. J Phys Earth. 1979;27:53–61. doi: 10.4294/jpe1952.27.53
50. Jackson JM, Sinogeikin SV, Bass JD., Sound velocities and elastic properties of γ-Mg2SiO4 to 853 K by Brillouin spectroscopy. Amer Mineral. 2000;85(2):296–303. doi:10.2138/am-2000-2-306.
51. Katsura T, Yokoshi S, Song M, et al. Thermal expansion of Mg2SiO4 ringwoodite at high pressures. J Geophys Res Solid Earth. 2004;109:B12209. doi:10.1029/2004JB003094.
52. Ashida T, Kume S, Ito E, et al. Mgsio3 ilmenite: heat capacity, thermal expansivity, and enthalpy of transformation. Phys Chem Miner. 1998;16:239–245.
53. Akaogi M, Kojitani H, Morita T, et al. Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite. Phys Chem Miner. 2008;35:287–297. doi:10.1007/s00269-008-0222-x.
54. Reynard B, Fiquet G, Itie J-P, et al. High-pressure X-ray diffraction study and equation of state of MgSiO3 ilmenite. Amer Mineral. 1996;81:45–50. doi: 10.2138/am-1996-1-206
55. Wang Y, Uchida T, Zhang J, et al. Thermal equation of state of akimotoite MgSiO3 and effects of the akimotoite–garnet transformation on seismic structure near the 660 km discontinuity. Phys Earth Planet Inter. 2004;143–144:57–80. doi:10.1016/j.pepi.2003.08.007.
56. Akaogi M, Ito E., Heat capacity of MgSiO3 perovskite. Geophys Res. Lett. 1993;20:105–108. doi: 10.1029/92GL02655
57. Anderson OL., Thermoelastic properties of MgSiO3 perovskite using the Debye approach. Amer Mineral. 1998;83:23–35. doi: 10.2138/am-1998-1-202
58. Wang Y, Weidner DJ, Lieberman RC, et al. P-V-T equation of state of (Mg,Fe)SiO3 perovskite: constraints on composition of the lower mantle. Phys Earth Planet Inter. 1994;83:13–40. doi: 10.1016/0031-9201(94)90109-0
59. Funamori N, Yagi T, Utsumi W, et al. Thermoelastic properties of MgSiO3 perovskite determined by in situ X ray observations up to 30 GPa and 2000 K. J Geophys Res. 1996;101(B4):8257–8269. doi: 10.1029/95JB03732
60. Komabayashi T, Hirose K, Sugimura E, et al. Simultaneous volume measurements of post-perovskite and perovskite in MgSiO3 and their thermal equations of state. Earth Planet Science Lett. 2008;265:515–524. doi:10.1016/j.epsl.2007.10.036.
61. Aizawa Y, Yoneda A, Katsura T, et al. Temperature derivatives of elastic moduli of MgSiO3 perovskite. Geophys Res Lett. 2004;31(L01602). doi: 10.1029/2003GL018762
62. Saxena SK, Dubrovinsky LS, Tutti F, et al. Equation of state of MgSiO3 with the perovskite structure based on experimental measurement. Amer Mineral. 1999;84:226–232. doi: 10.2138/am-1999-0303
63. Fiquet G, Dewaele A, Andrault D, et al. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geopys Res Lett. 2000;27(1):21–24. doi: 10.1029/1999GL008397
64. Vanpeteghem CB, Zhao J, Angel RJ, et al. Crystal structure and equation of state of MgSiO3 perovskite. Geophys Res Lett. 2006;33:L03306. doi:10.1029/2005GL024955.
65. Guignot N, Andrault D, Morard G, et al. Thermoelastic properties of post-perovskite phase MgSiO3 determined experimentally at core–mantle boundary P–T conditions. Earth Planet Science Lett. 2007;256:162–168. doi:10.1016/j.epsl.2007.01.025.
66. Ono S, Kikegawa T, Ohishi Y., Equation of state of CaIrO3-type MgSiO3 up to 144 GPa. Amer Mineral. 2006;91:475–478. doi: 10.2138/am.2006.2118
67. Sakai T, Dekura H, Hirao N., Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures. Scientific Rep. 2016;6:22652. doi:10.1038/srep22652.
68. Holland T, Powell R., An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamor Geol. 2011;29:333–383. doi:10.1111/j.1525-1314.2010.00923.x.
69. Litasov KD, Sharygin IS, Dorogokupets PI, et al. Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K. J Geophys Res Solid Earth. 2013;118:5274–5284. doi:10.1002/2013JB010270.
70. Holzapfel WB., Equations of state for solid sunder strong compression. Z Kristal. 2001;216(9):473–488.
71. Burakovsky L, Preston DL., Analytic model of the Gruneisen parameter all densities. J Phys Chem Solids. 2004;65:1581–1587. doi:10.1016/j.jpcs.2003.10.076.
72. Shanker J, Singh BP, Baghel HK., Volume dependence of the Gruneisen parameter and maximum compression limit for iron. Phys B. 2007;387:409–414. doi: 10.1016/j.physb.2006.04.026
73. Stacey FD, Davis PM., High pressure equations of state with applications to the lower mantle and core. Phys Earth Planet Inter. 2004;142(3–4):137–184. doi:10.1016/j.pepi.2004.02.003.
74. Agee CB., Phase transformations and seismic structure in the upper mantle and transition zone. Rev Miner Geochem. 1998;37(1):165–203.
75. Pushcharovsky DY, Pushcharovsky YM., The mineralogy and the origin of deep geospheres: a review. Earth Sci Rev. 2012;113(1–2):94–109. doi: 10.1016/j.earscirev.2012.03.004
76. Zharkov VN., Physics of the earth’s interior. Moscow: Nauka i obrazovanie; 2012.
77. Katsura T, Yamada H, Nishikawa O, et al. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J. Geophys Res Solid Earth. 2004;109(B2). doi: 10.1029/2003JB002438
78. Inoue T, Irifune T, Higo Y., The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction. Phys Chem Miner. 2006;33(2):106–114. doi: 10.1007/s00269-005-0053-y
79. Fei Y, van Orman J, Li J, et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res Solid Earth. 2004;109(B2). doi: 10.1029/2003JB002562
80. Katsura T, Yamada H, Shinmei T, et al. Post-spinel transition in Mg2SiO4 determined by high P-T in situ X-ray diffractometry. Phys Earth Planet Inter. 2003;136(1–2):11–24. doi: 10.1016/S0031-9201(03)00019-0
81. Ono S, Katsura T, Ito E, et al. In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett. 2001;28(5):835–838. doi: 10.1029/1999GL008446
82. Ono S, Oganov AR., In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth Planet Sci Lett. 2005;236(3–4):914–932. doi: 10.1016/j.epsl.2005.06.001
83. Hirose K, Sinmyo R, Sata N, et al. Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. Geophys Res Lett. 2006;33(1):L01310. doi:10.1029/2005GL024468.
84. Tateno S, Hirose K, Sata N, et al. Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″ layer. Earth Planet Sci Lett. 2009;277(1–2):130–136. doi: 10.1016/j.epsl.2008.10.004
85. Tange Y, Kuwayama Y, Irifune T, et al. P-V-T equation of state of MgSiO3 perovskite based on the MgO pressure scale: a comprehensive reference for mineralogy of the lower mantle. J Geophys Res Solid Earth. 2012;117(B6). doi: 10.1029/2011JB008988