Инд. авторы: Sokol E., Kokh S., Kozmenko O., Novikova S., Khvorov P., Nigmatulina E.A, Belogub E., Kirillov M.V.
Заглавие: Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea)
Библ. ссылка: Sokol E., Kokh S., Kozmenko O., Novikova S., Khvorov P., Nigmatulina E.A, Belogub E., Kirillov M.V. Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea) // MINERALS. - 2018. - Vol.8. - Iss. 8. - Art.344. - ISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min8080344; РИНЦ: 35724407; SCOPUS: 2-s2.0-85051822352; WoS: 000443257900034;
Реферат: eng: We characterise the mineralogy and geochemistry of Oligo-Miocene Maykopian shales that are currently extruded by onshore mud volcanoes of the Kerch-Taman Province (the Northern Black Sea) from the depths of similar to 2.5-3 km. The ejected muds are remarkable by highly diverse authigenic mineralogy that comprises glauconite, apatite, siderite, mixed Fe-Mg-Mn-(Ca) and Mn-Ca-Fe-carbonates, pyrite, marcasite, sphalerite, cinnabar, chalcopyrite, nukundamite, akantite, native Cu, Au and Au-Ag alloys. Precise geochemical techniques and high-resolution methods are applied to study the composition of bulk rocks, sulphide and carbonate fractions, as well as individual mineral species, including trace element and isotopic compositions of carbonates (C, O) and pyrite (S). Mineralogy of clastic and heavy fractions is used as a provenance tracer. Oxygen-deficient to weakly sulphuric deposition conditions are inferred for the parent sediments proceeding from trace element partitioning between carbonate, sulphide, and metallic phases. The main conclusion of the study is that onshore mud volcanoes of the region only transport buried sedimentary material and authigenic minerals they store to the ground surface.
Ключевые слова: ENRICHMENT; ORIGIN; CARBONATE CRUSTS; MARINE-SEDIMENTS; SEDIMENTARY PYRITE; WATER COLUMN; KERCH PENINSULA; TRACE-ELEMENT CONTENT; suboxic deposition conditions; trace element partitioning; sulphide; carbonate; Kerch-Taman Province; Maykop shale; mud volcano; authigenic minerals; SOUTH CASPIAN BASIN; AZERBAIJAN;
Издано: 2018
Физ. хар-ка: 344
Цитирование: 1. Rakhmanov, R.R. Mud Volcanoes and Their Petroleum Potential; Nedra: Moscow, USSR, 1987. (In Russian)
2. Kopf, A. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1–52, doi:10.1029/2000RG000093.
3. Shnyukov, E.; Sheremetiev, V.; Maslakov, N.; Kutniy, V.; Gusakov, I.; Trofimov, V. Mud Volcanoes of the Kerch-Taman Region; GlavMedia Publishing House: Krasnodar, Russia, 2005. (In Russian)
4. Evans, R.J.; Davies, R.J.; Stewart, S.A. Internal structure and eruptive history of a kilometre-scale mud volcano system, South Caspian Sea. Basin Res. 2007, 19, 153–163, doi:10.1111/j.1365-2117.2007.00315.x.
5. Alizadeh, A.A. Geology of Azerbaijan, Oil and Gas, v. VII; Nafta-Press: Baku, Azerbaijan, 2009. (In Russian)
6. Mazzini, A. Mud volcanism: Processes and implications. Mar. Pet. Geol. 2009, 26, 1677–1680, doi:10.1016/j.marpetgeo.2009.05.003.
7. Dimitrov, L. Mud volcanoes as the most important pathways for degassing deeply buried sediments. Earth Sci. Rev. 2002, 59, 49–76, doi:10.1016/S0012-8252(02)00069-7.
8. Planke, S.; Svensen, H.; Hovland, M.; Banks, D.A.; Jamtveit, B. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 2003, 23, 258–268, doi:10.1007/s00367-003-0152-z.
9. Martinelli, G.; Panahi, B. Mud Volcanoes, Geodynamics and Seismicity; Springer: Dordrecht, The Netherlands, 2005.
10. Deville, E.; Guerlais, S.H. Cyclic activity of mud volcanoes: Evidences from Trinidad (SE Caribbean). Mar. Pet. Geol. 2009, 26, 1681–1691, doi:10.1016/j.marpetgeo.2009.03.002.
11. Bonini, M.; Mazzarini, F. Mud volcanoes as potential indicators of regional stress and pressurized layer depth. Tectonophysics 2010, 494, 32–47, doi:10.1016/j.earscirev.2012.09.002.
12. Feyzullayev, A.A. Mud volcanoes in the South Caspian basin: Nature and estimated depth of its products. Nat. Sci. 2012, 4, 445–453, doi:10.4236/ns.2012.47060.
13. Bonini, M.; Tassi, F.; Feyzullayev, A.A.; Aliyev, C.S.; Capecchiacci, F.; Minissaleet, A. Deep gases discharged from mud volcanoes of Azerbaijan: New geochemical evidence. Mar. Pet. Geol. 2013, 43, 450–463, doi:10.1016/j.marpetgeo.2012.12.003.
14. Chao, H.C.; You, C.F.; Liu, H.C.; Chung, H.C. The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions. Geochim. Cosmochim. Acta 2013, 114, 29–51, doi:10.1016/j.gca.2013.03.035.
15. Li, N.; Huang. H.; Chen, D. Fluid sources and chemical processes inferred from geochemistry of pore fluids and sediments of mud volcanoes in the southern margin of the Junggar Basin, Xinjiang, northwestern China. Appl. Geochem. 2014, 46, 1–9, doi:10.1016/j.apgeochem.2014.04.007.
16. Oppo, D.; Capozzi, R.; Nigarov, A.; Esenov, P. Mud volcanism and fluid geochemistry in the Cheleken peninsula, western Turkmenistan. Mar. Pet. Geol. 2014, 57, 122–134, doi:10.1016/j.marpetgeo.2014.05.009.
17. Kokh, S.N.; Sokol, E.V.; Dekterev, A.A.; Kokh, K.A.; Rashidov, T.M.; Tomilenko, A.A.; Bul’bak, T.A.; Khasaeva, A.; Guseinov, A. The 2011 Strong Fire Eruption of Shikhzarli Mud Volcano, Azerbaijan: A Case Study with Implications for Methane Flux Estimation. Environ. Earth Sci. 2017, 76, 701, doi:10.1007/s12665-017-7043-5.
18. Sokol, E.V.; Kokh, S.N.; Kozmenko, O.A.; Lavrushin, V.Y.; Kikvadze, O.A. Mud volcanoes as important pathway for trace elements input to the environment: Case study from the Kerch-Taman province, Northern Black Sea. In Proceedings of the SGEM 2018: 18th International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, 2–8 July 2018; pp. 307–322.
19. Aliyev, A.A.; Guliyev, I.S.; Rakhmanov, R.R. Catalogue of Mud Volcanoes Eruptions of Azerbaijan: 1810–2007; Nafta-Press: Baku, Azerbaijan, 2009.
20. Sokol, E.; Novikov, I.; Zateeva, S.; Vapnik, Y.; Shagam, R.; Kozmenko, O. Combustion metamorphism in Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res. 2010, 22, 414–438, doi:10.1111/j.1365-2117.2010.00462.x.
21. Seryotkin, Y.V.; Sokol, E.V.; Kokh, S.N. Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos 2012, 133–135, 75–90, doi:10.1016/j.lithos.2011.12.010.
22. Grapes, R.; Sokol, E.; Kokh, S.; Kozmenko, O.; Fishman, I. Petrogenesis of Na-rich paralava formed by methane flares associated with mud volcanism, Altyn-Emel National Park, Kazakhstan. Contrib. Miner. Pet. 2013, 165, 781–803, doi:10.1007/s00410-012-0835-4.
23. Bagirov, E.; Lerche, I. Flame hazards in the South Caspian Basin. Energy Explor. Exploit. 1998, 16, 373–397.
24. Jakubov, A.A.; Grigoryants B.V.; Aliev, A.D.; Babazade, A.D.; Veliev, M.M.; Gadzhiev, Y.A.; Guseinzade, I.G.; Kabulova, A.Y.; Kastryulin, N.S.; Matanov, F.A.; et al. Mud Volcanism in the USSR Territory and Its Relation with Petroleum Potential; Elm: Baku, USSR, 1980. (In Russian)
25. Avdusin, P.P. Mud Volcanoes of the Crimea-Caucasian Geological Province. A Petrographic Study; Izd. AS USSR: Moscow, USSR, 1948. (In Russian)
26. Yassir, N.A. Mud Volcanoes and the Behaviour of Overpressured Clays and Silts. Ph.D. Thesis, University of London, London, UK, 1989.
27. Mazzini, A.; Etiope, G. Mud volcanism: An updated review. Earth-Sci. Rev. 2017, 168, 81–112, doi:10.1016/j.earscirev.2017.03.001.
28. Dill, H.G.; Kaufhold, S. The Totumo mud volcano and its near-shore marine sedimentological setting (North Colombia)–from sedimentary volcanism to epithermal mineralization. Sediment. Geol. 2018, 366, 14–31, doi:10.1016/j.sedgeo.2018.01.007.
29. Aliev, A.A.; Lavrushin, V.Y.; Kokh, S.V.; Sokol, E.V.; Petrov, O.L. Isotopic composition of pyritic sulfur from the mud volcanic ejecta in Azerbaijan. Lithol. Miner. Resour. 2017, 52, 358–368, doi:10.1134/S0024490217050029.
30. Aloisi, G.; Bouloubassi, I.; Heijs, S.; Pancost, R.D.; Pierre, C.; Sinninghe Damsté, J.S.; Gottschal, J.C.; Forney, L.J.; Rouchy, J.M. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet. Sci. Lett. 2002, 203, 195–203, doi:10.1016/S0012-821X(02)00878-6.
31. Gontharet, S.; Pierre, C.; Blanc-Valleron, M.M.; Rouchy, J.M.; Fouquet, Y.; Bayon, G.; Foucher, J.P.; Woodside, J.; Mascle, J. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep-Sea Res. Part II 2007, 54, 1292–1311, doi:10.1016/j.dsr2.2007.04.007.
32. Merinero, P.R.; Lunar, H.R.; Martínez, F.J. Mechanisms of trace metal enrichment in submarine, methane-derived carbonate chimneys from the Gulf of Cadiz. J. Geochem. Explor. 2012, 112, 297–305, doi:10.1016/j.gexplo.2011.09.011.
33. Wang, S.; Magalhães, V.H.; Pinheiro, L.M.; Liu, J.; Yan, W. Tracing the composition, fluid source and formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes. Mar. Pet. Geol. 2015, 68, 192–205, doi:10.1016/j.marpetgeo.2015.08.022.
34. Carvalho, L.; Monteiro, R.; Figueira, P.; Mieiro, C.; Almeida, J.; Pereira, E.; Magalhães, V.; Pinheiro, L.; Vale, C. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: Evidence of Cd, As and Ba fronts in upper layers. Deep-Sea Res. Part I 2018, 131, 133–143, doi:10.1016/j.dsr.2017.12.003.
35. Ershov, V.V.; Levin, B.V. New data on the material composition of mud volcano products on Kerch Peninsula. Dokl. Earth Sci. 2016, 471, 1149–1153, doi:10.1134/S1028334X16110027.
36. Inan, S.; Yalcin, M.N.; Guliev, I.S.; Kuliev, K.; Feizullayev, A.A. Deep petroleum occurrences in the lower Kura depression, south Caspian Basin, Azerbaijan: An organic geochemical and basin modelling study. Mar. Pet. Geol. 1997, 14, 731–762, doi:10.1016/S0264-8172(97)00058-5.
37. Feyzullayev, A.A.; Guliyev, I.S.; Tagiyev, M.F. Source potential of the Mesozoice Cenozoic rocks in the South Caspian Basin and their role in forming the oil accumulations in the Lower Pliocene reservoirs. Pet. Geosci. 2001, 7, 409–417, doi:10.1144/petgeo.7.4.409.
38. Fowler, S.R.; Mildenhall, J.; Zalova, S.; Riley, G.; Elsley, G.; Desplanques, A.; Guliyev, F. Mud volcanoes and structural development on Shah Deniz. J. Pet. Sci. Eng. 2000, 28, 189–206, doi:10.1016/S0920-4105(00)00078-4.
39. Smith-Rouch, L.S. Oligocenee-Miocene Maykop/Diatom Total Petroleum System of the South Caspian Basin Province, Azerbaijan, Iran, and Turkmenistan. U.S. Geol. Surv. Bull. 2006, 2201, 1–27.
40. Luther, G.W.; Meyerson, A.L.; Krajewski, J.J.; Hires, R. Metal sulfides in estuarine sediments. J. Sediment. Res. 1980, 50, 1117–1120, doi:10.1306/212F7B94-2B24-11D7-8648000102C1865D.
41. Chow, N.; Morad, S.; Al-Aasm, I.S. Origin of authigenic Mn-Fe carbonates and pore-water evolution in marine sediments: Evidence from Cenozoic strata of the Arctic Ocean and Norwegian-Greenland Sea (ODP LEG 151). J. Sediment. Res. 2000, 70, 682–699, doi:10.1306/2DC40930-0E47-11D7-8643000102C1865D.
42. Rickard, D. Sulfidic Sediments and Sedimentary Rocks; Elsevier: Amsterdam, The Netherlands, 2012.
43. Fleurance, S.; Cuney, M.; Malartre, M.; Reyx, J. Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr. Palaeocl. 2013, 369, 201–219, doi:10.1016/j.palaeo.2012.10.020.
44. Gregory, D.D.; Large, R.R.; Halpin, J.A.; Lounejeva Baturina, E.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410, doi:10.2113/econgeo.110.6.1389.
45. Little, S.H.; Vance, D.; Lyons, T.W.; McManus, J. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings. Am. J. Sci. 2015, 315, 77–119, doi:10.2475/02.2015.01.
46. März, C.; Poulton, S.W.; Beckmann, B.; Kuster, K.; Wagner, T.; Kasten, S. Redox sensitivity of P cycling during black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 2008, 72, 3703–3717, doi:10.1016/j.gca.2008.04.025.
47. Sokol, E.V.; Kozmenko, O.A.; Khoury, H.N.; Kokh S.N.; Novikova S.A.; Nefedov, A.A.; Sokol, I.A.; Zaikin, P. Calcareous sediments of the Muwaqqar Chalk Marl Formation, Jordan: Mineralogical and geochemical evidences for Zn and Cd enrichment. Gondwana Res. 2017, 46, 204–226, doi:10.1016/j.gr.2017.03.008.
48. Parnell, J.; Perez, M.; Armstrong, J.; Bullock, L.; Feldmann, J.; Boyce, A.J. Geochemistry and metallogeny of Neoproterozoic pyrite in oxic and anoxic sediments. Geochem. Perspect. Lett. 2018, 7, 12–16, doi:10.7185/geochemlet.1812.
49. Okay, A.I.; Şengör, A.M.C.; Görür, N. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 1994, 22, 267–270, doi:10.1130/0091-7613(1994)022<0267:KHOTOO>2.3.CO;2.
50. Sidorenko, A.V. Geology of USSR, v. VIII (Crimea); Nedra: Moscow, USSR, 1969. (In Russian)
51. Zonenshain, L.P.; Le Pichon, X. Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics 1986, 123, 181–240, doi:10.1016/0040-1951(86)90197-6.
52. Nedumov, R.I. Lithology, geochemistry, and paleogeography of Cenozoic deposits in the Caucasus foothills. Litologiya i Poleznye Iskopaemye 1994, 1, 69–77. (In Russian)
53. Lavrushin, V.Y.; Kopf, A.; Deyhle, A.; Stepanets, M.I. Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from boron isotopes. Lithol. Miner. Resour. 2003, 38, 120–153, doi:10.1023/A:1023452025440.
54. Popov, S.V.; Rögl, F.; Rozanov, A.Y.; Steininger, F.F.; Shcherba, I.G.; Kováč, M. Lithological-Paleogeographic Maps of Paratethys. 10 Maps Late Eocene to Pliocene. Scale: 1:5000000; Courier Forschungsinstitut Senckenberg: Stuttgart, Germany, 2004.
55. Popov, S.V.; Antipov, M.P.; Zastrozhnov, A.S.; Kurina, E.E.; Pinchuk, T.N. Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr. Geol. Correl. 2010, 18, 200–224, doi:10.1134/S0869593810020073.
56. Kopf, A.; Deyhle, A.; Lavrushin, V.Y.; Polyak, B.G.; Gieskes, J.M.; Buachidze, G.I.; Wallmann, K.; Eisenhauer, A. Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone. Int. J. Earth Sci. (Geol. Rundsch) 2003, 92, 407–425, doi:10.1007/s00531-003-0326-y.
57. Meisner, A.; Krylov, O.; Nemcok, M. Development and structural architecture of the Eastern Black Sea. Lead. Edge 2009, 28, 1046–1055, doi:10.1190/1.3236374.
58. Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann G. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea–the Kerch seep area. Mar. Geol. 2012, 319–322, 57–74, doi:10.1016/j.margeo.2012.07.005.
59. Kokh, S.N.; Shnyukov, Y.F.; Sokol, E.V.; Novikova, S.A.; Kozmenko, O.A.; Semenova, D.V.; Rybak, E.N. Heavy carbon travertine related to methane generation: A case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment. Geol. 2015, 325, 26–40, doi:10.1016/j.sedgeo.2015.05.005.
60. Herbin, J.P.; Saint-Germès, M.; Maslakov, N.; Shnyukov, E.F.; Vially, R. Oil seeps from the “Boulganack” mud volcano in the Kerch Peninsula (Ukraine-Crimea), study of the mud and the gas: Inferences for the petroleum potential. Oil Gas Sci. Technol. 2008, 63, 609–628, doi:10.2516/ogst:2008008.
61. Olenchenko, V.V.; Shnyukov, Y.F.; Gas’kova, O.L.; Kokh, S.N.; Sokol, E.V.; Bortnikova, S.B.; El’tsov, I.N. Explosion Dynamics of the Andrusov Mud Vent (Bulganak Mud Volcano Area, Kerch Peninsula, Russia). Dokl. Earth Sci. 2015, 464, 951–955, doi:10.1134/S1028334X15090123.
62. Nosovsky, M.F. The regional stratigraphic scale of the Maikopian deposits of the Crimea plain. Geologichesky Zhurnal 2003, 3, 137–145. (In Russian)
63. Seidov, A.G. Lithology of the Maykop Formation in Azerbaijan; Izd. Akademii Nauk Azerbaidzhanskoi SSR: Baku, USSR, 1962. (In Russian)
64. Lavrushin, V.Y.; Aidarkozhina, A.; Kikvadze, O.E.; Kokh, S.N. Geochemistry of mud volcanic fluids in the southern West-Kuban Basin: A case study with implication for source and mobilization depth reconstruction. In Proceedings of the XXII Conference on Groundwater in Siberia and Far East, Yakutsk, Russia, 22–26, June, 2018; pp. 291–297. (In Russian)
65. Kharaka, Y.K; Mariner, R.H. Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins. In Thermal History of Sedimentary Basins. Methods and Case Histories; Naeser, N.D., McCulloh, T.H., Eds.; Springer: New York, NY, USA, 1989; pp. 99–117.
66. Naumenko, A.D.; Naumenko, M.A. Main patterns of high-potential reservoirs in the northeastern Black Sea. Geologiya i Poleznye Iskopaemye Mirovogo Okeana 2008, 4, 49–58. (In Russian)
67. Smyslov, A.A. Geothermal Map: Map of the Crustal Heat Flow Regime in the USSR Territory. Scale 1:10000000. Ministry of Geology: Moscow, USSR, 1977. (In Russian)
68. Kikvadze, O.E.; Lavrushin, V.Yu.; Pokrovskii, B.G.; Polyak, B.G. Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis. Lithol. Miner. Resour. 2014, 49, 491–504, doi:10.1134/S0024490214060066.
69. Shatsky, V.; Sitnikova, E.; Kozmenko, O.; Palessky, S.; Nikolaeva, I.; Zayachkovsky, A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 2006, 47, 482–496.
70. Saryg-ool, B.Yu.; Myagkaya, I.N.; Kirichenko, I.S.; Gustaytis, M.A.; Shuvaeva, O.V.; Zhmodik, S.M.; Lazareva, E.V. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochemistry and mineralogy. Sci. Total Environ. 2017, 581–582, 460–471, doi:10.1016/j.scitotenv.2016.12.154.
71. Lavrent’ev, Y.G.; Korolyuk, V.N.; Usova, L.V.; Nigmatulina, E.N. Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 2015, 56, 1428–1436, doi:10.1016/j.rgg.2015.09.005.
72. Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006.
73. Hubert, F.; Caner, L.; Meuner, A.; Ferrage, E. Unraveling complex <2 µm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions: Implications for soil pedogenesis and reactivity. Am. Mineral. 2012, 97, 384–398, doi:10.2138/am.2012.3900.
74. Guggenheim, S.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Eberl, D.D.; Formoso, M.L.L; Galán, E.; Merriman, R.J.; Peacor, D.R.; Stanjek, H.; et al. Report of the Association Internationale Pour L’Étude Des Argiles (AIPEA) Nomenclature Committee for 2001: Order, Disorder and Crystallinity in Phyllosilicates and the use of the “Crystallinity Index”. Clay Miner. 2002, 37, 389–393, doi:10.1180/0009855023720043.
75. Taylor, S.M.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Science: Oxford, UK, 1985.
76. Rudnick, R.L.; Gao, S. The composition of the continental crust Treatise on Geochemistry—The Crust; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2003; pp. 1–64.
77. Romanek, C.S.; Jiménez-López, C.; Navarro, A.R.; Sánchez-Román, M.; Sahai, N.; Coleman, M. Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. Geochim. Cosmochim. Acta 2009, 73, 5361–5376, doi:10.1016/j.gca.2009.05.065.
78. Anovitz, L.M.; Essen, E.J. Phase equilibrium in the system CaCO3-MgCO3-FeCO3. J. Petrol. 1987, 28, 389–414, doi:10.1093/petrology/28.2.389.
79. Bau, M.; Dulski, P. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55, doi:10.1016/0301-9268(95)00087-9.
80. Bolhar, R.; Kamber, B.S.; Moorbath, S.; Fedo, C.M.; Whitehouse, M.J. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 2004, 222, 43–60, doi:10.1016/j.epsl.2004.02.016.
81. Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220, doi:10.1016/j.epsl.2013.12.020.
82. Cabral, A.R.; Radtke, M.; Munnik, F.; Lehmann, B.; Reinholz, U.; Riesemeier, H.; Tupinambá, M.; Kwitko-Ribeiro, R. Iodine in alluvial platinum–palladium nuggets: Evidence for biogenic precious-metal fixation. Chem. Geol. 2011, 281, 125–132, doi:10.1016/j.chemgeo.2010.12.003.
83. Meisel, T.; Horan, M.F. Analytical methods for the highly siderophile elements. Rev. Mineral. Geochem. 2016, 81, 89–105, doi:10.2138/rmg.2016.81.02.
84. Hagvall, K.; Persson, P.; Karlsson, T. Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(III) in the presence of aquatic organic matter. Geochim. Cosmochim. Acta 2014, 146, 76–89, doi:10.1016/j.gca.2014.10.006.
85. Rice, C.M.; Atkin, D.; Bowels, J.F.W.; Criddle, A.J. Nukundamite, a new mineral, and idaite. Mineral. Mag. 1979, 43, 193–200, doi:10.1180/minmag.1979.043.326.01.
86. Hatert, F. Transformation sequences of copper sulfides at Vielsalm, Stavelot Massif, Belgium. Can. Mineral. 2005, 43, 623–635, doi:10.2113/gscanmin.43.2.623.
87. Hámor-Vido, M.; Viczián, I. Vitrinite reflectance and smectite content of Mixed-layer illite/smectites in Neogene Sequences of the Pannonian Basin, Hungary. Acta Geol. Hung. 1993, 36/2, 197–209.
88. Stefanov, Y. Illite/smectite diagenesis and thermal evolution of Lower Cretaceous-Paleogene successions in the Dolna Kamchiya Depression, Eastern Bulgaria. Geol. Balc. 2018, 47, 3–21.
89. Huang, W.-L.; Bassett, W.A.; Wu, T.-C. Dehydration and hydration of montmorillonite at elevated temperatures and pressures monitored using synchrotron radiation. Am. Mineral. 1994, 79, 683–691.
90. Huggett, J. Low-temperature illitization of smectite in the late Eocene and early Oligocene of the Isle of Wight (Hampshire basin), UK. Am. Mineral. 2005, 90, 1192–1202, doi:10.2138/am.2005.1674.
91. Hall, P.L.; Astill, D.M.; McConnell, J.D.C. Thermodynamic and structural aspects of the dehydration of smectites in sedimentary rocks. Clay Miner. 1986, 21, 633–648, doi:10.1180/claymin.1986.021.4.13.
92. Morse, J.W.; Luther, G.W. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999, 63, 3373–3378, doi:10.1016/S0016-7037(99)00258-6.
93. Rue, E.L.; Smith, G.J.; Cutter, G.A.; Bruland, K.W. The response of trace element redox couples to suboxic conditions in the water column. Deep-Sea Res. 1997, 44, 113–134, doi:10.1016/S0967-0637(96)00088-X.
94. Cutter, G.A.; Moffett, J.G.; Nielsdóttir, M.C.; Sanial, V. Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Mar. Chem. 2018, 201, 77–89, doi:10.1016/j.marchem.2018.01.003.
95. Mucci, A. Manganese uptake during calcite precipitation from seawater: Conditions leading to formation of pseudokutnahorite. Geochim. Cosmochim. Acta 1988, 52, 1859–1868, doi:10.1016/0016-7037(88)90009-9.
96. Böttcher, M.E. Manganese (II) partitioning during experimental precipitation of rhodochrosite-calcite solid solutions from aqueous solutions. Mar. Chem. 1998, 62, 287–297, doi:10.1016/S0304-4203(98)00039-5.
97. Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep-Sea Res. 2008, 55, 50–72, doi:10.1016/j.dsr.2007.10.001.
98. Zachara, J.M.; Cowan, C.E.; Resch, C.T. Sorption of divalent metals on calcite. Geochim. Cosmochim. Acta 1991, 55, 1549–1562, doi:10.1016/0016-7037(91)90127-Q.
99. Alwan, K.A.; Williams, P.A. Mineral formation fromaqueous solution. Part I. The deposition of hydrozincite, Zn5(OH)6(CO3)2, from natural waters. Transit. Met. Chem. 1979, 4, 128–132, doi:10.1007/BF00618840.
100. Abanda, P.A.; Hannigan, R. Effect of diagenesis on trace element partitioning in shales. Chem. Geol. 2006, 230, 42–59, doi:10.1016/j.chemgeo.2005.11.011.
101. Rajan, S.; Mackenzie, F.T.; Glenn, C.R. A thermodynamic model for water column precipitation of siderite in the Plio-Pleistocene Black Sea. Am. J. Sci. 1996, 296, 506–548, doi:10.2475/ajs.296.5.506.
102. Campbell, K.A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeogr. Palaeocl. 2006. 232, 362–407, doi:10.1016/j.palaeo.2005.06.018.
103. Roberts, H.H.; Feng, D.; Joye, S.B. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep-Sea Res. Part II 2010, 57, 2040–2054, doi:10.1016/j.dsr2.2010.09.003.
104. Matsumoto, R.; Ryu, B.J.; Lee, S.R.; Lin, S.; Wu, S.; Sain, K.; Pecher, I.; Riedel, M. Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia and Oceania region. Mar. Pet. Geol. 2011, 28, 1751–1767, doi:10.1016/j.marpetgeo.2011.09.009.
105. Bruland, K.W.; Lohan, M.C. Controls of trace metals in seawater. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 6, pp. 23–47.
106. Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32, doi:10.1016/j.chemgeo.2015.02.026.
107. Huerta-Diaz, M.A.; Morse, J.W. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 1992, 56, 2681–2702, doi:10.1016/0016-7037(92)90353-K.
108. Janssen, D.J.; Conway, T.M.; John, S.G.; Christian, J.R.; Kramer, D.I.; Pedersen, T.F.; Cullen, J.T. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. Proc. Natl. Acad. Sci. USA 2014, 111, 6888–6893, doi:10.1073/pnas.1402388111.
109. Awid-Pascual, R.; Kamenetsky, V.S.; Goemann, K.; Allen, N.; Noble, T.; Lottermoser, B.G.; Rodemann, T. The evolution of authigenic Zn–Pb-Fe-bearing phases in the Grieves Siding peat, western Tasmania. Contrib. Mineral. Petrol. 2015, 170, 17, doi:10.1007/s00410-015-1167-y.
110. Lane, T.W.; Morel, F.M. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA. 2000, 97, 4627–4631, doi:10.1073/pnas.090091397.
111. Morel, F.M.M. The oceanic cadmium cycle: Biological mistake or utilization? Proc. Natl. Acad. Sci. USA 2013, 110, E1877, doi:10.1073/pnas.1304746110.
112. Mederer, J.; Moritz, R.; Zohrabyan, S.; Vardanyan, A.; Melkonyan, R.; Ulianov, A. Base and precious metal mineralization in Middle Jurassic rocks of the Lesser Caucasus: A review of geology and metallogeny and new data from the Kapan, Alaverdi and Mehmana districts. Ore Geol. Rev. 2014, 58, 185–207, doi:10.1016/j.oregeorev.2013.10.007.
113. Varentsov, I.M. Manganese Ores of SuperGene Zone: Geochemistry of Formation; Springer: Berlin, Germany, 1996.
114. Berner, Z.A.; Puchelt, H.; Nöltner, T.; Kramar, U. Pyrite geochemistry in the Toarcian Posidonia Shale of southwest Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology 2013, 60, 548–573, doi:10.1111/j.1365-3091.2012.01350.x.
115. Large, R.R.; Bull, S.W.; Maslennikov, V.V. A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Econ. Geol. 2011, 106, 331–358, doi:10.2113/econgeo.106.3.331.
116. Berner, R.A. A new geochemical classification of sedimentary environments. J. Sediment. Res. 1981, 51, 359–365, doi:10.1306/212F7C7F-2B24-11D7-8648000102C1865D.