Инд. авторы: Yelisseyev A.P., Molokeev M.S., Jiang X.X., Krinitsin P.G., Isaenko L.I., Lin Z.S.
Заглавие: Structure and Optical Properties of the Li(2)In(2)GeSe(6 )Crystal
Библ. ссылка: Yelisseyev A.P., Molokeev M.S., Jiang X.X., Krinitsin P.G., Isaenko L.I., Lin Z.S. Structure and Optical Properties of the Li(2)In(2)GeSe(6 )Crystal // Journal of Physical Chemistry C. - 2018. - Vol.122. - Iss. 30. - P.17413-17422. - ISSN 1932-7447. - EISSN 1932-7455.
Идентиф-ры: DOI: 10.1021/acs.jpcc.8b02799; РИНЦ: 35752548; SCOPUS: 2-s2.0-85049888061; WoS: 000440956200045;
Реферат: eng: Intense search for new nonlinear optical crystals for the mid-infrared region is in progress, and Li-containing quaternary chalcogenides are expected to improve transparency range, stability, phase-matching conditions, and other parameters in comparison with commercially available AgGaS2, AgGaSe2, and ZnGeP2. Single crystals of Li2In2GeSe6 up to 8 mm in size were obtained by the Bridgman- Stockbarger growth technique, and their high quality was confirmed by exciton luminescence. A monoclinic structure and direct band-to-band electronic transitions were established, and the thermal expansion was shown to be virtually isotropic. Defect-related absorption and luminescence were revealed, and the way to lower them was suggested. The electronic structure, density of states, and some optical properties were calculated from the first principles for Li2In2GeSe6. The calculated nonlinear coefficients and rather large birefringence indicate a strong phase-matching ability. These investigations demonstrate that Li2In2GeSe6 is a promising mid-infrared nonlinear optical crystal.
Ключевые слова: SE; DAMAGE; LIINSE2; GROWTH; SINGLE-CRYSTALS; ELECTRONIC-STRUCTURE; TEMPERATURE-DEPENDENCE; PHASE-MATCHING PROPERTIES; LIGAGE2SE6; SEMICONDUCTORS;
Издано: 2018
Физ. хар-ка: с.17413-17422
Цитирование: 1. Nikogosyan, D. N. Nonlinear Optical Crystals: A Complete Survey; Springer Science Business Media, Inc.: New York, 2005.
2. Schunemann, P. G. Crystal Growth and Nonlinear Materials. AIP Conf. Proc. 2007, 916, 541-559, 10.1063/1.2751932
3. Fossier, S.; Salaün, S.; Mangin, J.; Bidault, O.; Thénot, I.; Zondy, J.-J.; Chen, W.; Rotermund, F.; Petrov, V.; Petrov, P. et al. Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate. J. Opt. Soc. Am. B 2004, 21, 1981-2007, 10.1364/josab.21.001981
4. Petrov, V.; Zondy, J.-J.; Bidault, O.; Isaenko, L.; Vedenyapin, V.; Yelisseyev, A.; Chen, W.; Tyazhev, A.; Lobanov, S.; Marchev, G. et al. Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoindate. J. Opt. Soc. Am. B 2010, 27, 1902-1927, 10.1364/josab.27.001902
5. Isaenko, L.; Yelisseyev, A.; Lobanov, S.; Krinitsin, P.; Petrov, V.; Zondy, J.-J. Ternary chalcogenides LiBC2 (B=In,Ga; C=S,Se,Te) for mid-IR nonlinear optics. J. Non-Cryst. Solids 2006, 352, 2439-2443, 10.1016/j.jnoncrysol.2006.03.045
6. Badikov, V. V.; Tyulyupa, A. G.; Sheverdyaeva, G. S.; Sheina, S. G. Solid Solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 Systems. Inorg. Mater. 1991, 27, 177-185
7. Petrov, V.; Badikov, V.; Shevyrdyaeva, G.; Panyutin, V.; Chizhikov, V. Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS4. Opt. Mater. 2004, 26, 217-222, 10.1016/j.optmat.2004.04.007
8. Schunemann, P. G. Growth of New Quaternary Nonlinear Optical Crystals for 1-micron-Pumped Mid-IR Generation. Proc. SPIE 2006, 6103, 610303, 10.1117/12.644877
9. Kim, Y.; Seo, I.-s.; Martin, S. W.; Baek, J.; Halasyamani, P. S.; Arumugam, N.; Steinfink, H. Characterization of New Infrared Nonlinear Optical Material with High Laser Damage Threshold, Li2Ga2GeS6. Chem. Mater. 2008, 20, 6048-6052, 10.1021/cm8007304
10. Mei, D.; Yin, W.; Feng, K.; Lin, Z.; Bai, L.; Yao, J.; Wu, Y. LiGaGe2Se6: A New IR Nonlinear Optical Material with Low Melting Point. Inorg. Chem. 2012, 51, 1035-1040, 10.1021/ic202202j
11. Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A.; Krinitsin, P. G.; Khyzhun, O. Y. Electronic structure and optical properties of noncentrosymmetric LiGaGe 2 Se 6, a promising nonlinear optical material. Phys. B 2016, 501, 74-83, 10.1016/j.physb.2016.08.021
12. Yelisseyev, A. P.; Isaenko, L. I.; Krinitsin, P.; Liang, F.; Goloshumova, A. A.; Naumov, D. Y.; Lin, Z. Crystal Growth, Structure, and Optical Properties of LiGaGe2Se6. Inorg. Chem. 2016, 55, 8672-8680, 10.1021/acs.inorgchem.6b01225
13. Isaenko, L.; Vasilyeva, I.; Merkulov, A.; Yelisseyev, A.; Lobanov, S. Growth of new nonlinear crystals LiMX2 (M=Al, In, Ga; X=S, Se, Te) for the mid-IR optics. J. Cryst. Growth 2005, 275, 217-223, 10.1016/j.jcrysgro.2004.10.089
14. Yin, W.; Feng, K.; Hao, W.; Yao, J.; Wu, Y. Synthesis, Structure, and Properties of Li2In2MQ6 (M = Si, Ge; Q = S, Se): A New Series of IR Nonlinear Optical Materials. Inorg. Chem. 2012, 51, 5839-5843, 10.1021/ic300373z
15. Stove, A. C.; Morrell, J.; Battacharya, P.; Tupitsyn, E.; Burger, A. Synthesis of a Potential Semiconductor neutron Detector Crystal LiGa(Se/Te)2: Materials Purity and Compatibility Effects. Proc. SPIE 2011, 8142, 81421H, 10.1117/12.894968
16. Tupitsyn, E.; Bhattacharya, P.; Rowe, E.; Matei, L.; Cui, Y.; Buliga, V.; Groza, M.; Wiggins, B.; Burger, A.; Stowe, A. Lithium Containing Chalcogenide Single Crystals for Neutron Detection. J. Cryst. Growth 2014, 393, 23-27, 10.1016/j.jcrysgro.2013.10.054
17. Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37-46, 10.1016/0025-5408(68)90023-8
18. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. [Sect.] A 1965, 140, A1133, 10.1103/physrev.140.a1133
19. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045-1097, 10.1103/revmodphys.64.1045
20. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First Principles Methods using CASTEP. Z. Kristallogr. 2005, 220, 567-570, 10.1524/zkri.220.5.567.65075
21. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868, 10.1103/physrevlett.77.3865
22. Hamann, D. R.; Schlüter, M.; Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494-1497, 10.1103/physrevlett.43.1494
23. Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B: Solid State 1976, 13, 5188-5192, 10.1103/physrevb.13.5188
24. Godby, R. W.; Schlüter, M.; Sham, L. J. Self-Energy Operators and Exchange-Correlation Potentials in Semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 10159-10175, 10.1103/physrevb.37.10159
25. Lin, Z.; Jiang, X.; Kang, L.; Gong, P.; Luo, S.; Lee, M.-H. First-Principles Materials Applications and Design of Nonlinear Optical Crystals. J. Phys. D: Appl. Phys. 2014, 47, 253001, 10.1088/0022-3727/47/25/253001
26. Lin, J.; Lee, M.-H.; Liu, Z.-P.; Chen, C.; Pickard, C. J. Mechanism for linear and nonlinear optical effects inβ-BaB2O4crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60, 13380-13389, 10.1103/physrevb.60.13380
27. Palik, E. D. Handbook of Optical Constants of Solids; Academic: New York, 1985.
28. Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001, 73, 515-562, 10.1103/revmodphys.73.515
29. Deyirmenjian, V. B.; Heine, V.; Payne, M. C.; Milman, V.; Lynden-Bell, R. M.; Finnis, M. W. Ab initioatomistic simulation of the strength of defective aluminum and tests of empirical force models. Phys. Rev. B: Condens. Matter Mater. Phys. 1995, 52, 15191-15207, 10.1103/physrevb.52.15191
30. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User's Manual; Bruker AXS: Karlsruhe, Germany, 2008.
31. Beister, H. J.; Ves, S.; Hönle, W.; Syassen, K.; Kühn, G. Structural phase transitions and optical absorption ofLiInSe2under pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 1991, 43, 9635-9642, 10.1103/physrevb.43.9635
32. Iseler, G. W. Thermal expansion and seeded bridgman growth of AgGaSe2. J. Cryst. Growth 1977, 41, 146-150, 10.1016/0022-0248(77)90107-5
33. Yelisseyev, A. P.; Drebushchak, V. A.; Titov, A. S.; Isaenko, L. I.; Lobanov, S. I.; Lyapunov, K. M.; Gruzdev, V. A.; Komarov, S. G.; Petrov, V.; Zondy, J.-J. Thermal properties of the midinfrared nonlinear crystal LiInSe2. J. Appl. Phys. 2004, 96, 3659-3665, 10.1063/1.1784616
34. Kokorina, V. F. Glasses for Infrared Optics; CRC Press, 1996.
35. Aarik, J.; Mändar, H.; Kirm, M.; Pung, L. Optical characterization of HfO2 thin films grown by atomic layer deposition. Thin Solid Films 2004, 466, 41-47, 10.1016/j.tsf.2004.01.110
36. Varshni, Y. P. Temperature Dependence of the Energy Gap in Semiconductors. Physica 1967, 34, 149-154, 10.1016/0031-8914(67)90062-6
37. O'Donnel, K. P.; Chen, X. Temperature Dependence of Semiconductor Band Gaps. Appl. Phys. Lett. 1991, 58, 2924-2926, 10.1063/1.104723
38. Sze, S. Physics of Semiconductor Devices, 2 nd ed.; Wiley: New York, 1981.
39. Yelisseyev, A.; Liang, F.; Isaenko, L.; Lobanov, S.; Goloshumova, A.; Lin, Z. S. Optical properties of LiGaSe 2 noncentrosymmetric crystal. Opt. Mater. 2017, 72, 795-804, 10.1016/j.optmat.2017.07.020
40. Bhosale, J.; Ramdas, A. K.; Burger, A.; Muñoz, A.; Romero, A. H.; Cardona, M.; Lauck, R.; Kremer, R. K. Temperature Dependence of Band Gaps in Semiconductors: Electron-phonon interaction. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 195208, 10.1103/physrevb.86.195208
41. Studenyak, I.; Kranjčec, M.; Kurik, M. Urbach Rule in Solid State Physics. Int. J. Optic. Appl. 2014, 4, 94-104, 10.5923/j.optics.20140403.02
42. Eifler, A.; Riede, V.; Brückner, J.; Weise, S.; Krämer, V.; Lippold, G.; Schmitz, W.; Bente, K.; Grill, W. Band Gap Energies and Lattice Vibrations of the Lithium Ternary Compounds LiInSe2, LiInS2, LiGaSe2and LiGaS2. Jpn. J. Appl. Phys. 2000, 39, 279-283, 10.7567/jjaps.39s1.279
43. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sect A 1976, 32, 751-767, 10.1107/s0567739476001551
44. Yelisseyev, A. P.; Isaenko, L. I.; Starikova, M. K. Optical study of defects in lithium iodate α-LiIO-3. J. Opt. Soc. Am. B 2012, 29, 1430-1435, 10.1364/josab.29.001430
45. Yelisseyev, A.; Krinitsin, P.; Isaenko, L.; Grazhdannikov, S. Spectroscopic properties of nonlinear optical LiGaTe2 crystal. Opt. Mater. 2015, 42, 276-280, 10.1016/j.optmat.2014.12.046
46. Isaenko, L.; Yelisseyev, A.; Lobanov, S.; Vedenyapin, V.; Krinitsyn, P.; Petrov, V. Properties of LiGa0.5In0.5Se2: A Quaternary Chalcogenide Crystal for Nonlinear Optical Applications in the Mid-IR. Crystals 2016, 6, 85-96, 10.3390/cryst6080085
47. Isaenko, L. I.; Yelisseyev, A. P.; Lobanov, S. I.; Krinitsin, P. G.; Molokeev, M. S. Structure and optical properties of Li2Ga2GeS6 nonlinear crystal. Opt. Mater. 2015, 47, 413-419, 10.1016/j.optmat.2015.06.014
48. Yelisseyev, A. P.; Isaenko, L. I.; Krinitsin, P.; Liang, F.; Goloshumova, A. A.; Naumov, D. Y.; Lin, Z. Crystal Growth, Structure, and Optical Properties of LiGaGe2Se6. Inorg. Chem. 2016, 55, 8672-8680, 10.1021/acs.inorgchem.6b01225
49. Luo, Z.-Z.; Lin, C.-S.; Cui, H.-H.; Zhang, W.-L.; Zhang, H.; Chen, H.; He, Z.-Z.; Cheng, W.-D. PbGa2MSe6 (M = Si, Ge): Two Exceptional Infrared Nonlinear Optical Crystals. Chem. Mater. 2015, 27, 914-922, 10.1021/cm504195x
50. Chen, M.-C.; Wu, L.-M.; Lin, H.; Zhou, L.-J.; Chen, L. Disconnection Enhances the Second Harmonic Generation Response: Synthesis and Characterization of Ba23Ga8Sb2S38. J. Am. Chem. Soc. 2012, 134, 6058-6060, 10.1021/ja300249n