Инд. авторы: Grishina S.N., Kodera P., Uriarte L.M., Dubessy J., Oreshonkov A., Goryainov S.V., Simko F., Yakovlev I., Roginskii E.M.
Заглавие: Identification of anhydrous CaCl2 and KCaCl3 in natural inclusions by Raman spectroscopy
Библ. ссылка: Grishina S.N., Kodera P., Uriarte L.M., Dubessy J., Oreshonkov A., Goryainov S.V., Simko F., Yakovlev I., Roginskii E.M. Identification of anhydrous CaCl2 and KCaCl3 in natural inclusions by Raman spectroscopy // Chemical Geology. - 2018. - Vol.493. - P.532-543. - ISSN 0009-2541. - EISSN 1878-5999.
Идентиф-ры: DOI: 10.1016/j.chemgeo.2018.07.017; РИНЦ: 35782317; SCOPUS: 2-s2.0-85049914144; WoS: 000439574000044;
Реферат: eng: Anhydrous chlorides - CaCl2, and KCaCl3 (chlorocalcite) were identified as mineral inclusions in halite from the Siberian Large Igneous Province at the contact of magmatic intrusions and evaporates. Chlorocalcite was also found as daughter mineral in polyphase hypersaline inclusions. While Raman spectra of KCaCl3 (chlorocalcite) in natural inclusions are similar to spectra of synthetic analogue, the Raman spectra of natural CaCl2 do not correspond to the published Raman spectra of synthetic CaCl2. Simulations of Raman spectra using ab initio density-functional theory (DFT) allowed us to calculate the spectra of individual polymorphs of CaCl2 and to discriminate anhydrous CaCl2 phases in natural inclusions and synthetic CaCl2. In the spectrum of the Pbcn polymorph of CaCl2 twelve different peaks could be identified at 74, 95, 99, 107, 124, 158, 164, 179, 212, 236, 244, 256 cm(-1) in contrast to five peaks in the spectrum of the Pnnm polymorph of CaCl2 at 115, 157, 160, 211 and 252 cm(-1). Naturally occurring CaCl2 in inclusions in halite consist of Pbcn polymorph only, which probably results from a mechanical stress on cooling from magmatic to ambient temperatures. However, the Raman spectra of the synthetic CaCl2 corresponds to the Pnnm phase with small contributions of the Pbcn phase. Raman spectra of synthetic KCaCl3 with main peaks at 58, 67, 90, 97, 133, 139, 147, 193 cm(-1) agrees well with the spectra of chlorocalcite in the natural inclusions. Positions of each atom in the KCaCl3 structure were refined using the density-functional theory. There are no imaginary phonon modes for the optimized structure, indicating that the structure of KCaCl3 is stable. Calculated Raman spectrum is in a good agreement with the Raman spectrum of synthetic and natural KCaCl3 samples.
Ключевые слова: METASOMATISM; BASIN; ORIGIN; RUSSIA; SIBERIA; SYSTEMS; HYDROTHERMAL FLUIDS; UDACHNAYA-EAST KIMBERLITE; Ab initio calculations; Daughter mineral; Chlorocalcite; Magma-salt interaction; Raman spectra; Polymorphs CaCl2; PHASE-TRANSITION; CARBONATE;
Издано: 2018
Физ. хар-ка: с.532-543
Цитирование: 1. Andreeva, I.A., Naumov, V.B., Kovalenko, V.I., Kononkova, N.N., Fluoride-sulfate and chloride-sulfate salt melts of the carbonatite-bearing complex Musgugai-Khuduk, southern Mongolia. Petrology 6:3 (1998), 284–292.
2. Anselment, B., Die Dinamik der Phasenumwandlung vom Rutil in denCaCl2-Typ am Beispiel de CaBr2 und zur Polymorphie des CaCl2: Thesis. 1986, Universität Karlsruhe.
3. Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nicois, M.C., Handbook of Mineralogy, Vol. III. Halides, Hydroxides. 1997, Oxides. Mineral Data Publishing, Tucson, 628.
4. Audetat, A., Pettke, T., Heinrich, C.A., Bodnar, R.J., Special paper: the composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 103:5 (2008), 877–908, 10.2113/gsecongeo.103.5.877.
5. Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D., Steele-MacInnis, M., Fluid inclusions in hydrothermal ore deposits. Treatise on Geochemistry, 2014, Elsevier, 119–142.
6. Burgess, S.D., Bowring, S.A., High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Sci. Adv., 1(7), 2015, e1500470, 10.1126/sciadv.1500470.
7. Burke, E.A., A mass discreditation of GQN minerals. Can. Mineral. 44:6 (2006), 1557–1560, 10.2113/gscanmin.44.6.1557.
8. Ceperley, D.M., Alder, B.J., Ground state of the Electron gas by a stochastic method. Phys. Rev. Lett. 45:7 (1980), 566–569, 10.1103/PhysRevLett.45.566.
9. Clark, R.P., Reinhardt, F.W., Phase diagrams for the binary systems CaCl2-KCl and CaCl2-CaCrO4. Thermochim. Acta 12:3 (1975), 309–314, 10.1016/0040-6031(75)85044-1.
10. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C., First principles methods using CASTEP. Z. Kristallogr., 220(5/6), 2005, 191, 10.1524/zkri.220.5.567.65075.
11. Clocchiatti, R., Massare, D., Jehanno, C., Origine hydrothermale des olivines gemmes de l'ile de Zabardad (St. Johns) Mer Rouge, par l'etude de leurs inclusions. Fortschr. Mineral. 104 (1981), 354–360.
12. D'Eyrames, E., Thomassot, E., Kitayama, Y., Golovin, A., Korsakov, A., Ionov, D., Danelian, T., Jolivet, M., A mantle origin for sulfates in the unusual “salty” Udachnaya-East kimberlite from sulfur abundances, speciation and their relationship with groundmass carbonates. Bull. Soc. Geol. Fr., 188(1–2), 2017, 6, 10.1051/bsgf/2017007.
13. Frezzotti, M.L., Tecce, F., Casagli, A., Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 112 (2012), 1–20, 10.1016/j.gexplo.2011.09.009.
14. Giuliani, G., Dubessy, J., Ohnenstetter, D., Banks, D., Branquet, Y., Feneyrol, J., Fallick, A.E., Martelat, J.-E., The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review. Mineral. Deposita 53:1 (2018), 1–20, 10.1007/s00126-017-0738-4.
15. Goryainov, S.V., Likhacheva, A.Y., Rashchenko, S.V., Shubin, A.S., Afanas'ev, V.P., Pokhilenko, N.P., Raman identification of lonsdaleite in Popigai impactites. J. Raman Spectrosc. 45:4 (2014), 305–313, 10.1002/jrs.4457.
16. Grishina, S., Dubessy, J., Kontorovich, A., Pironon, J., Inclusions in salt beds resulting from thermal metamorphism by dolerite sills (eastern Siberia, Russia). Eur. J. Mineral. 4:5 (1992), 1187–1202, 10.1127/ejm/4/5/1187.
17. Grishina, S.N., Polozov, A.G., Mazurov, M.P., Goryainov, S.V., Genesis of chloride-carbonate segregations of the Udachnaya-East pipe. Dokl. Earth Sci. 458:1 (2014), 1129–1131, 10.1134/S1028334X14090141.
18. Grishina, S.N., Polozov, A.G., Smirnov, S.Z., Mazurov, M.P., Goryainov, S.V., Inclusions in chloride xenoliths from the Udachnaya-East kimberlite. Geochem. Int. 52:7 (2014), 595–603, 10.1134/S0016702914050048.
19. Hurai, V., Huraiová M., Slobodník, M., Thomas, R., Geofluids: Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes / Vratislav Hurai, Monika Huraiová Marek Slobodník, Rainer Thomas. 2015, Elsevier, Amsterdam.
20. Kamenetsky, V.S., van Achterbergh, E., Ryan, C.G., Naumov, V.B., Mernagh, T.P., Davidson, P., Extreme chemical heterogeneity of granite-derived hydrothermal fluids: an example from inclusions in a single crystal of miarolitic quartz. Geology, 30(5), 2002, 459, 10.1130/0091-7613(2002)030<0459:ECHOGD>2.0.CO;2.
21. Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., Weiss, Y., Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 139 (2014), 145–167, 10.1016/j.earscirev.2014.09.004.
22. Kitayama, Y., Thomassot, E., Galy, Α., Golovin, A., Korsakov, A., D'Eyrames, E., Assayag, N., Bouden, N., Ionov, D., Co-magmatic sulfides and sulfates in the Udachnaya-East pipe (Siberia): a record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources. Chem. Geol. 455 (2017), 315–330, 10.1016/j.chemgeo.2016.10.037.
23. Koděra, P., Takács, Á., Racek, M., Šimko, F., Luptáková J., Váczi, T., Antal, P., Javorieite, KFeCl3: a new mineral hosted by salt melt inclusions in porphyry gold systems. Eur. J. Mineral. 29 (2017), 995–1004, 10.1127/ejm/2017/0029-2672.
24. Kontorovich, A.E., Khomenko, A.V., Burshtein, L.M., Likhanov, I.I., Pavlov, A.L., Staroseltsev, V.S., Ten, A.A., Intense basic magmatism in the Tunguska petroleum basin, eastern Siberia, Russia. Pet. Geosci. 3:4 (1997), 359–369, 10.1144/petgeo.3.4.359.
25. Kopylova, M.G., Gaudet, M., Kostrovitsky, S.I., Polozov, A.G., Yakovlev, D.A., Origin of salts and alkali carbonates in the Udachnaya East kimberlite: insights from petrography of kimberlite phases and their carbonate and evaporite xenoliths. J. Volcanol. Geotherm. Res. 327 (2016), 116–134, 10.1016/j.jvolgeores.2016.07.003.
26. Kurosawa, M., Sasa, K., Shin, K.-C., Ishii, S., Trace-element compositions and Br/Cl ratios of fluid inclusions in the Tsushima granite, Japan: significance for formation of granite-derived fluids. Geochim. Cosmochim. Acta 182 (2016), 216–239, 10.1016/j.gca.2016.03.015.
27. Lecumberri-Sanchez, P., Steele-MacInnis, M., Weis, P., Driesner, T., Bodnar, R.J., Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons. Geology 43:12 (2015), 1063–1066, 10.1130/G37163.1.
28. Léger, J.-M., Haines, J., Danneels, C., Phase transition sequence induced by high-pressure in CaCl2. J. Phys. Chem. Solids 59:8 (1998), 1199–1204, 10.1016/S0022-3697(98)00057-2.
29. LeSar, R., Introduction to Computational Materials Science: Fundamentals to Applications. 2013, Cambridge University Press, Cambridge, 414.
30. Li, M., Yan, M., Wang, Z., Liu, X., Fang, X., Li, J., The origins of the Mengye potash deposit in the Lanping–Simao Basin, Yunnan Province, Western China. Ore Geol. Rev. 69 (2015), 174–186, 10.1016/j.oregeorev.2015.02.003.
31. Liu, Y.H., Ma, Y.M., He, Z., Cui, T., Liu, B.B., Zou, G.T., Phase transition and optical properties of CaCl2 under high pressure by ab initio pseudopotential plane-wave calculations. J. Phys. Condens. Matter, 19(42), 2007, 425225, 10.1088/0953-8984/19/42/425225.
32. Lowenstein, T.K., Spencer, R.J., Syndepositional origin of potash evaporites; petrographic and fluid inclusion evidence. Am. J. Sci. 290:1 (1990), 1–42, 10.2475/ajs.290.1.1.
33. Mazurov, M.P., Bondarenko, P.M., Structural genetic model of the Angara–Illim-type ore-forming system. Geol. Geofiz. 38 (1997), 1584–1593.
34. Mazurov, M.P., Grishina, S.N., Istomin, V.E., Titov, A.T., Metasomatism and ore formation at contacts of dolerite with saliferous rocks in the sedimentary cover of the southern Siberian platform. Geol. Ore Deposits 49:4 (2007), 271–284, 10.1134/S1075701507040022.
35. Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations. Phys. Rev. B 13:12 (1976), 5188–5192, 10.1103/PhysRevB.13.5188.
36. Naumov, V.B., Solovova, I.P., Kovalenker, V.A., Rusinov, V.L., Kononkova, N.N., Crystallization conditions and compositions of silicate and salt melts of the volcanoplutonic complex in the Angren area, Soviet Central Asia.: Trans. (Doklady). USSR Acad. Sci.(5), 1990, 199–202.
37. Newton, R.C., Manning, C.E., Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies. Geofluids, 73, 2010, 1597, 10.1111/j.1468-8123.2009.00275.x.
38. Osorgin, N., Tomilenko, A., 1990. Heating stage: Patent No. 1562816 of the USSR.
39. Perdew, J.P., Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23:10 (1981), 5048–5079, 10.1103/PhysRevB.23.5048.
40. Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77:18 (1996), 3865–3868, 10.1103/PhysRevLett.77.3865.
41. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 2009, 136406, 10.1103/PhysRevLett.100.136406.
42. Polozov, A.G., Svensen, H.H., Planke, S., Grishina, S.N., Fristad, K.E., Jerram, D.A., The basalt pipes of the Tunguska Basin (Siberia, Russia): high temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441 (2016), 51–64, 10.1016/j.palaeo.2015.06.035.
43. Porezag, D., Pederson, M.R., Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 54:11 (1996), 7830–7836, 10.1103/PhysRevB.54.7830.
44. Refson, K., Tulip, P.R., Clark, S.J., 2006. Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 73 (15), R4954. doi: https://doi.org/10.1103/PhysRevB.73.155114.
45. Reyf, F.G., Bazheyev, E.D., Magmatic chloride solution and tungsten mineralization. Geochem. Int. 14 (1977), 45–51.
46. Roedder, E., Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim. Cosmochim. Acta 56:1 (1992), 5–20, 10.1016/0016-7037(92)90113-W.
47. Segall, M.D., Pickard, C.J., Shah, R., Payne, M.C., Population analysis in plane wave electronic structure calculations. Mol. Phys. 89 (1996), 571–577.
48. Seifert, H.-J., Fink, H., Thiel, G., Uebach, J., Thermodynamische und strukturelle Untersuchungen an den Verbindungen der Systeme KCl/MCl2 (M = Ca, Cd, Co, Ni). Z. Anorg. Allg. Chem. 520:1 (1985), 151–159, 10.1002/zaac.19855200118.
49. Tomaszewski, P.E., Structural phase transitions in crystals. I. Database. Phase Transit. 38:3 (1992), 127–220, 10.1080/01411599208222899.
50. Unruh, H.-G., Mühlenberg, D., Hahn, Ch., Ferroelastic phase transition in CaCl2 studied by Raman spectroscopy. Z. Phys. B: Condens. Matter 86:1 (1992), 133–138, 10.1007/BF01323557.
51. Uriarte, L.M., Dubessy, J., Boulet, P., Baonza, V.G., Bihannic, I., Robert, P., Reference Raman spectra of synthesized CaCl2·nH2O solids (n = 0, 2, 4, 6). J. Raman Spectrosc. 46:10 (2015), 822–828, 10.1002/jrs.4730.
52. Warren, J.K., Magma-Evaporite-Hydrothermal Metal Associations. Warren, J.K., (eds.) Evaporites. Evaporites: A Geological Compendium, 2nd Ed, 2016, Springer International Publishing, Cham, 1591–1657.