Инд. авторы: Safonova I., Maruyama S., Kruk N., Obut O., Kotler P., Gavryushkina O., Khromykh S.V., Kuibida M.L., Krivonogov S.
Заглавие: Pacific-type orogenic belts: linking evolution of oceans, active margins and intra-plate magmatism
Библ. ссылка: Safonova I., Maruyama S., Kruk N., Obut O., Kotler P., Gavryushkina O., Khromykh S.V., Kuibida M.L., Krivonogov S. Pacific-type orogenic belts: linking evolution of oceans, active margins and intra-plate magmatism // Episodes. - 2018. - Vol.41. - Iss. 2. - P.78-87. - ISSN 0705-3797.
Идентиф-ры: DOI: 10.18814/epiiugs/2018/018008; РИНЦ: 35754358; SCOPUS: 2-s2.0-85049211176; WoS: 000436897300001;
Реферат: eng: Pacific-type orogens (fold belts) hosting accretionary complexes are places keeping records of the evolution of paleo-oceans, and formation and transformation of continental crust at their active convergent margins. Pacific-type orogeny induces destruction of crustal materials, their subduction to the deep mantle, generation of hydrous-carbonated plumes in the mantle transition zone (MTZ) and its related intra-plate magmatism. We propose a new approach for linking paleo-oceans, active margins and intra-plate magmatism in central and eastern Asia. The approach "stands" on three "whales": the model of Ocean Plate Stratigraphy (OPS), the parameters of Pacific-type convergent margins and a model of hydrous-carbonated plumes. The OPS model evolved from extensive studies of accretionary complexes in the western Pacific, in particular in Japan; it allows differentiating oceanic plates of one paleo-ocean and evaluating their sizes and ages. An important issue for reconstructing the history of paleo-oceans is to estimate major parameters of the Pacific-type convergent margins: accreting vs. eroding, geometrical length, and life time. For the eroding margins we must define major periods of tectonic erosion and transportation of oceanic and continental materials to the deep mantle and evaluate a possibility of their accumulation in the MTZ. All this would allow us to develop a holistic model linking the evolution of paleooceans, the accretion and erosion of oceanic and continental crust materials at Pacific-type convergent margins, mantle metasomatism and intra-plate magmatism.
Ключевые слова: CONTINENTAL CONSTRUCTION; MANTLE BENEATH; ACCRETIONARY; SUBDUCTION; TECTONICS; MIDDLE; ROCKS; EAST; JAPAN; PLATE STRATIGRAPHY;
Издано: 2018
Физ. хар-ка: с.78-87
Цитирование: 1. Alexeiev, D.V., Kroner, A., Hegner, E., Rojas-Agramonte, Y., Biske, Yu.S., Wong, J., Geng, H., Ivleva, E.A., Muhlberg, M., Mikolaichuk, A.V., and Liu, D.Y., 2016, Middle to Late Ordovician arc system in the Kyrgyz Middle Tianshan: from arc-continent collision to subsequent evolution of a Palaeozoic continental margin. Gondwana Research, v. 39, pp. 261-291.
2. Barrie, T.C., 1993, Petrochemistry of shoshonitic rocks associated with porphyry copper-gold deposits of central Quesnellia, British Columbia. Canada Journal of Geochemical Exploration, v. 48, pp. 225-258.
3. Buslov, M.M., Saphonova, I.Yu, Watanabe, T., Obut, O.T., Fujiwara, Y., Iwata, K., Semakov, N.N., Sugai, Y., Smirnova, L.V., Kazansky, A.Yu., and Itaya, T., 2001, Evolution of the Paleo-Asian Ocean (Altai-Sayan, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosciences Journal, v. 5, pp. 203-224.
4. Cleven, N.R., Lin, S., and Xiao, W., 2015, The Hongliuhe fold-and-thrust belt: evidence of terminal collision and suture-reactivation after the Early Permian in the Beishan orogenic collage, Northwest China. Gondwana Research, v. 27, pp. 796-810.
5. Deruelle, B., 1978, Calc-alkaline and shoshonitic lavas from five Andean volcanoes (between latitudes 2145' and 2430'S) and the distribution of the Plio-Quaternary volcanism of the south-central and southern Andes. Journal of Volcanology and Geothermal Research, v. 3, pp. 281-298.
6. Fujisaki, W., Isozaki, Y., Maki, K., Sakata, S., Hirata, T., and Maruyama, S., 2014, Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: constraints to the provenance of the mid-Mesozoic trench in East Asia. Journal of Asian Earth Sciences, v. 88, pp. 62-73.
7. Hilde, T.W.C., 1983, Sediment subduction versus accretion around the Pacific. Tectonophysics, v. 99, pp. 381-397.
8. Huang, J., and Zhao, D., 2006, High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research, v. 111. Doi: 10.1029/2005JB004066.
9. Ichikawa, H., Kawai, K., Yamamoto, S., and Kameyama, M., 2013, Supply rate of continental materials to the deep mantle through subduction channels. Tectonophysics, v. 592, pp. 46-52.
10. Isozaki, Y., 1997, Contrasting two types of orogen in Permo-Triassic Japan: accretionary versus collisional. Island Arc, v. 6, pp. 2-24.
11. Isozaki, Y., Maruyama, Sh., and Fukuoka, F., 1990, Accreted oceanic materials in Japan. Tectonophysics, v. 181, pp. 179-205.
12. Johnston, F.K.B., Turchyn, A.V., and Edmonds, M., 2011, Decarbonation efficiency in subduction zones: implications for warm Cretaceous climates. Earth and Planetary Science Letters, v. 303, pp. 143-152.
13. Kawai, K., Yamamoto, S., Tsuchiya, T., and Maruyama, S., 2013, The second continent: existence of granitic continental materials around the bottom of the mantle transition zone. Geoscience Frontiers, v. 4, pp. 1-6.
14. Kemkin, I.V., Khanchuk, A.I., and Kemkina, R.A., 2016, Accretionary prisms of the Sikhote-Alin Orogenic Belt: composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin. Journal of Geodynamics, v. 102, pp. 202-230.
15. Kolesnichenko, M.V., Zedgenizov, D.A., Litasov, K.D., Safonova, I.Yu., and Ragozin, A.L., 2017, Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: implications from the Udachnaya Kimberlite Pipe. Gondwana Research, v. 47, pp. 249-266.
16. Komiya, T., Maruyama, S., Masuda, T., Nohda, S., Hayashi, M., and Okamoto, K., 1999, Plate tectonics at 3.8-3.7 Ga: field evidence from the Isua Accretionary Complex, southern West Greenland. The Journal of Geology, v. 107, pp. 515-554.
17. Kuramoto, S., Taira, A., Bangs, N.L., Shipley, T.H., and Moore, G.F., 2000, Seismogenic zone in the Nankai accretionary wedge general summary of Japan-U.S. Collaborative 3-D seismic investigation. Journal of Geography, v. 109, pp. 531-539.
18. Kusky, T., Windley, B., Safonova, I., Wakita, K., Wakabayashi, J., Polat, A., and Santosh, M., 2013, Recognition of Ocean Plate Stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction and accretion. Gondwana Research, v. 24, pp. 501-547.
19. Kuzmin, M.I., Yarmolyuk, V.V., and Kravchinskiy, V.A., 2010, Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth Science Reviews, v. 102, pp. 29-59.
20. Li, Z., and Zhong, S., 2009, Supercontinent-superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Physics of the Earth and Planetary Interiors, v. 176, pp. 143-156.
21. Litasov, K.D., Foley, S.F., and Litasov, Yu.D., 2000, Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos, v. 54, pp. 83-114.
22. Maruyama, S., Santosh, M., and Zhao, D., 2007, Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary. Gondwana Research, v. 11, pp. 7-37.
23. Maruyama, S., Hasegawa, A., Santosh, M., Kogiso, T., Omori, S., Nakamura, H., Kawai, K., and Zhao, D., 2009, The dynamics of big mantle wedge, magma factory and metamorphic-metasomatic factory in subduction zones. Gondwana Research, v. 16, pp. 141-430.
24. Maruyama, S., Kawai, T., and Windley, B.F., 2010, Ocean Plate Stratigraphy and its imbrication in an accretionary orogen: the Mona complex, Anglesey-Lleyn, Wales, UK. In: Kusky, T.M., Zhai, M., and Xiao, W. (Eds.), The Evolving Continents: Understanding Processes of Continental Growth. Geological Society of London, Special Publications, v. 338, pp. 55-75.
25. Maruyama, S., Sawaki, Y., Ebisuzaki, T., Ikoma, M., Omori, S., and Komabayashi, T., 2014, Initiation of leaking Earth: an ultimate trigger of the Cambrian explosion. Gondwana Research, v. 25, pp. 910-944.
26. Maruyama, S., 1994, Plume tectonics. Journal of the Geological Society of Japan, v. 100, p. 24-49.
27. Metcalfe, I., 2011, Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, v. 19, pp. 3-21.
28. Morris, E.M., and Pasteris, J.D., 1987, Mantle metasomatism and alkaline magmatism. Geological Society of America, Special Paper, v. 215, 383 p.
29. Nance, R.D., and Murphy, J.B., 2013, Origins of the supercontinent cycle. Geoscience Frontiers, v. 4, pp. 439-448.
30. Pearce, J.A., Van Der Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, J.A., and Parkinson, I.J., 1992, Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): a case study of magma genesis during the initial stages of subduction. In: Fryer, P., Pearce, J.A., and Stokking, I.J. (Eds.), Proceedings of the Ocean Drilling Program. College Station, pp. 623-659.
31. Reichow, M.K., Pringle, M.S., Al'Mukhamedov, A.I., Allen, M.B., Andreichev, V.L., Buslov, M.M., Davies, C.E., Fedoseev, G.S., Fitton, J.G., Inger, S., Medvedev, A.Ya., Mitchell, C., Puchkov, V.N., Safonova, I.Yu., Scott, R.A., and Sauders, A.D., 2009, The timing and extent of the eruption of the Siberian traps large igneous province: implication for the end-Permian environmental crisis. Earth and Planetary Science Letters, v. 277, pp. 9-20.
32. Safonova, I., 2014, The Russian-Kazakh orogen: an overview and main debatable issues. Geoscience Frontiers, v. 5, pp. 537-552.
33. Safonova, I., 2017, Juvenile versus recycled crust in the Central Asian Orogenic Belt: implications from Ocean Plate Stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Research, v. 47, pp. 6-27.
34. Safonova, I., and Maruyama, S., 2014, Asia: a frontier for a future supercontinent Amasia. International Geology Review, v. 59, pp. 1051-1071.
35. Safonova, I., and Santosh, M., 2014, Accretionary complexes in the Asia-Pacific region: tracing archives of Ocean Plate Stratigraphy and tracking mantle plumes. Gondwana Research, v. 25, pp. 126-158.
36. Safonova, I., Seltmann, R., Kroner, A., Gladkochub, D., Schulmann, K., Xiao, W., Kim, T., Komiya, T., and Sun, M., 2011, A new concept of continental construction in the Central Asian Orogenic Belt (compared to actualistic examples from the Western Pacific). Episodes, v. 34, pp. 186-194.
37. Safonova, I., Seltmann, R., Sun, M., Kroner, A., Kislov, E., Kovach, V., and Collins, A., 2013, Continental construction in Central Asia (IGCP592): scientific results and meetings in 2012. Episodes, v. 36, pp. 227-234.
38. Safonova, I., Maruyama, S., and Litasov, K., 2015, Generation of hydrouscarbonate plumes in the mantle transition zone linked to tectonic erosion and subduction. Tectonophysics, v. 662, pp. 454-471.
39. Safonova, I., Biske, G., Romer, R.L., Seltmann, R., Simonov, V., and Maruyama, S., 2016c, Middle Paleozoic mafic magmatism and Ocean Plate Stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Research, v. 30, pp. 236-256.
40. Safonova, I., Maruyama, S., Kojima, S., Komiya, T., Krivonogov, S., and Koshida, K., 2016b, Recognizing OIB and MORB in accretionary complexes: a new approach based on Ocean Plate Stratigraphy, petrology, and geochemistry. Gondwana Research, v. 33, pp. 92-114.
41. Safonova, I., Seltmann, R., Sun, M., Xiao, W., Dong Y., Eyuboglu Y., Pushkarev E., and Kruk N., 2016a, Juvenile crust, mantle magmatism and metallogeny of the Central Asian Orogenic Belt. Episodes, v. 39, pp. 59-69.
42. Santosh, M., Maruyama, S., and Yamamoto, S., 2009, The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research, v. 15, pp. 324-341.
43. Scholl, D.W., and von Huene, R., 2007, Crustal recycling at modern subduction zones applied to the past -issues of growth and preservation of continental basement crust, mantle geochemistry and supercontinent reconstruction. In: Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., and Martinez Catalan, J.R. (Eds.), 4-D Framework of Continental Crust. Geological Society of America, Memoir, v. 200, pp. 9-32.
44. Scotese, C.R., 2004, A continental drift flipbook. Journal of Geology, v. 11, pp. 729-741.
45. Senshu, H., Maruyama, S., Rino, S., and Santosh, M., 2009, Role of tonalite-trodhjemite granite (TTG) crust subduction on the mechanism supercontinent breakup. Gondwana Research, v. 15, pp. 433-442.
46. Simonov, V.A., Mikolaichuk, A.V., Safonova, I.Yu., Kotlyarov, A.V., and Kovyazin, S.V., 2015, Late Paleozoic-Cenozoic intra-plate continental basaltic magmatism of the Tienshan-Junggar region in the SW Central Asian Orogenic Belt. Gondwana Research, v. 27, pp. 1646-1666.
47. Stampfli, G.M., and Borel, G.D., 2002, A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamics plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, v. 196, pp. 17-33.
48. Stern, R., 2010, The anatomy and ontogeny of modern intra-oceanic arc systems. In: Kusky, T.M., Zhai, M., and Xiao, W. (Eds.), The Evolving Continents: Understanding Processes of Continental Growth. Geological Society of London, Special Publications, v. 338, pp. 7-34.
49. Strasser, M., Moore, G.F., Kimura, G., Kitamura, Y., Kopf, A.J., Lallemant, S., Park, J.-O., Screaton, E.J., Su, X., Underwood, M.B., and Zhao, X., 2009, Origin and evolution of a splay fault in the Nankai accretionary wedge. Nature Geoscience, v. 2, pp. 648-652.
50. Sun M., Yuan C., Xiao W., Long X., Xia X, Zhao G., Lin S., Wu F., and Kroner A., 2008, Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, v. 247, pp. 352-383.
51. Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B., and Croudace, I.W., 1994, Mineralogy, chemistry, and genesis of the Boninite Series Volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology, v. 35, pp. 577-617.
52. von Huene, R., Ranero, C., and Vannucchi, P., 2004, Generic model of subduction erosion. Geology, v. 32, pp. 913-916.
53. Wakita, K., and Metcalf, I., 2005, Ocean Plate Stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences, v. 24, pp. 679-702.
54. Wilson, M., 1989, Igneous Petrogenesis. Springer, Dordrecht, 466 p.
55. Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., and Badarch, G., 2007, Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, v. 164, pp. 31-47.
56. Xiao, W., Zhang, Z., and Safonova, I., 2013, International field trip and workshop "Beishan Orogen in NW China: accretionary tectonics, magmatism, eclogite and granulite complexes". Episodes, v. 36, pp. 295-297.
57. Yamamoto, S., Senshu, H., Rino, S., Omori, S., and Maruyama, S., 2009, Granite subduction: arc subduction, tectonic erosion and sediment subduction. Gondwana Research, v. 15, pp. 443-453.
58. Yang, G., Li., Xiao, W., and Tong, L., 2015, OIB-type rocks within West Junggar ophiolitic melanges: evidence for the accretion of seamounts. Earth-Science Reviews, v. 150, pp. 477-496.
59. Yarmolyuk, V.V., Kuzmin, M.I., and Ernst, R.E., 2014, Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, v. 93, pp. 158-179.
60. Zhao, D., Maruyama, S., and Omori, S., 2007, Mantle dynamics of western Pacific to East Asia: new insight from seismic tomography and mineral physics. Gondwana Research, v. 11, pp. 120-131.