Инд. авторы: Kaveev A.K., Sokolov N.S., Suturin S.M., Zhiltsov N.S., Golyashov V.A., Kokh K.A., Prosvirin I.P., Tereshchenko O.E., Sawada M.
Заглавие: Crystalline structure and magnetic properties of structurally ordered cobalt-iron alloys grown on Bi-containing topological insulators and systems with giant Rashba splitting
Библ. ссылка: Kaveev A.K., Sokolov N.S., Suturin S.M., Zhiltsov N.S., Golyashov V.A., Kokh K.A., Prosvirin I.P., Tereshchenko O.E., Sawada M. Crystalline structure and magnetic properties of structurally ordered cobalt-iron alloys grown on Bi-containing topological insulators and systems with giant Rashba splitting // Crystengcomm. - 2018. - Vol.20. - Iss. 24. - P.3419-3427. - ISSN 1466-8033.
Идентиф-ры: DOI: 10.1039/c8ce00326b; РИНЦ: 35742149; SCOPUS: 2-s2.0-85048808980; WoS: 000435573500017;
Реферат: eng: Epitaxial Co40Fe40B20 and Co55Fe45 (further-CoFe(B)) films were grown on Bi2Te3(0001) and Bi2Se3(0001) substrates by the laser molecular beam epitaxy (LMBE) technique at 200-400 °C. Structurally ordered ferromagnetic thin films were obtained on topological insulator surfaces for the first time. A body-centered cubic-type (bcc) crystalline structure of CoFe(B) with the (111) plane parallel to the (0001) plane of Bi2Te3 was observed, in contrast to the polycrystalline CoFe(B) film formed on Bi2Se3(0001) at RT using a high-temperature seeding layer. Using RHEED 3D reciprocal space mapping, the epitaxial relationships for the CoFe(B)/Bi2Te3 heterostructure were revealed. MOKE and AFM measurements showed the isotropic azimuthal in-plane behavior of the magnetization vector in CoFe(B)/Bi2Te3, in contrast to uniaxial magnetic anisotropy observed in CoFe(B)/Bi2Se3. XPS measurements showed a higher stability of CoFe(B) grown on Bi2Te3 towards oxidation, compared to that of CoFe(B) grown on Bi2Se3. XAS and XMCD measurements for both types of concerned nanostructures allowed the calculation of spin and orbital magnetic moments for Co and Fe. Additionally, we have studied the crystalline structure and magnetic properties of the CoFe(B)/BiTeI system with giant Rashba splitting. © The Royal Society of Chemistry 2018.
Ключевые слова: Bismuth compounds; Cobalt alloys; Crystal structure; Crystalline materials; Electric insulators; Ferromagnetic materials; Iron alloys; Magnetic anisotropy; Magnetic moments; Selenium compounds; Thin films; Crystalline structure; Epitaxial relationships; Ferromagnetic thin films; Laser molecular beam epitaxy; Reciprocal space mapping; Spin and orbital magnetic moments; Topological insulators; Uniaxial magnetic anisotropy; Tellurium compounds; Molecular beam epitaxy; Binary alloys;
Издано: 2018
Физ. хар-ка: с.3419-3427
Цитирование: 1. J. Sanchez-Barriga et al. Nat. Commun. 2016 7 10559
2. M. Vergniory et al. JETP Lett. 2012 95 4 213
3. P. Hai et al. Nature 2009 458 489
4. A. Shikin et al. Phys. Rev. B: Condens. Matter Mater. Phys. 2014 89 125416
5. V. Golyashov et al. J. Appl. Phys. 2012 112 113702
6. S. Pandharpure, Process development for integration of CoFe(B)/MgO-based magnetic tunnel junction (MTJ) device on silicon, MSc thesis, Rochester Institute of Technology, 2007
7. G. Viaud N. Pertsev Phys. Rev. B: Condens. Matter Mater. Phys. 2014 90 064429
8. I. Klimovskikh A. Shikin M. Otrokov A. Ernst I. Rusinov O. Tereshchenko V. Golyashov J. Sánchez-Barriga A. Varykhalov O. Rader K. Kokh E. Chulkov Sci. Rep. 2017 7 3353
9. V. Golayashov, et al., Formation of topological phase on the BiTeI surface, Proc. Of XIII Russian conference on Semiconductor physics, Ekaterinburg, Okt. 2-6, 2017, p. 80
10. S. Shi A. Wang Y. Wang R. Ramaswamy Lei Shen J. Moon D. Zhu J. Yu S. Oh Y. Feng H. Yang Phys. Rev. B 2018 97 041115(R)
11. S. Suturin et al. J. Appl. Crystallogr. 2016 49 5 1532
12. S. Yuasa et al. Appl. Phys. Lett. 2005 87 242503
13. N. Sokolov et al. Phys. Rev. B: Condens. Matter Mater. Phys. 2013 87 125407
14. J. Stohr J. Magn. Magn. Mater. 1999 200 470
15. J. Stohr H. Konig Phys. Rev. Lett. 1995 75 20 3748
16. C. Chen Y. Idzerda H. Lin N. Smith G. Meigs E. Chaban G. H. Ho E. Pellegrin F. Sette Phys. Rev. Lett. 1995 75 1 152
17. H. Durr G. van der Laan B. Thole Phys. Rev. Lett. 1996 76 3464
18. H. Park T. Koo T. H. Jang J. Kang J. Korean Phys. Soc. 2015 66 10 1541
19. R. Desautels C. Shueh K. Lin J. Freeland J. van Lierop J. Appl. Phys. 2015 117 17A723
20. J. Meyer et al. J. Chem. Phys. 2015 143 104302
21. M. Desjonquères et al. Phys. Rev. B: Condens. Matter Mater. Phys. 2007 76 024412
22. C. Boeglin E. Beaurepaire V. Halte V. Lopez-Flores C. Stamm N. Pontius H. A. Durr J.-Y. Bigot Nature 2010 465 458
23. S. Assa Aravindh S. Mathi Jaya M. Valsakumar C. Sundar Appl. Nanosci. 2012 2 4 409
24. C. Wagner, W. Riggs, L. Davis and J. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN, 1st edn, 1979
25. S. Eremeev et al. Nano Lett. 2018