Инд. авторы: Borovikov A.A., Vladykin N.V., Tretiakova I.G., Dokuchits E.Y.
Заглавие: Physicochemical conditions of formation of hydrothermal titanium mineralization on the Murunskiy alkaline massif, western Aldan (Russia)
Библ. ссылка: Borovikov A.A., Vladykin N.V., Tretiakova I.G., Dokuchits E.Y. Physicochemical conditions of formation of hydrothermal titanium mineralization on the Murunskiy alkaline massif, western Aldan (Russia) // Ore Geology Reviews. - 2018. - Vol.95. - P.1066-1075. - ISSN 0169-1368.
Идентиф-ры: DOI: 10.1016/j.oregeorev.2017.11.007; РИНЦ: 35511419; SCOPUS: 2-s2.0-85035789611; WoS: 000432760500057;
Реферат: eng: The unique Aldan ore-magmatic province in Yakutia is characterized by Mesozoic alkaline magmatism and related ore deposits (Cu-Au porphyry, gold-quartz vein and gold-brannerite). The Murunskiy alkaline massif occurs in the western part of this province. This massif includes the world's largest volcanic-plutonic complex of potassium-alkaline rocks and has no analogs in the world. High agpaitic indexes are common for all magmatic rocks of the massif. Moreover, the massif is well known for its unique Ba-Sr carbonatite and charoite rocks. We have studied the fluid regime of a post-magmatic formation of rutile and anatase-brookite quartz veins with pyrite, galena, sphalerite, chalcopyrite, native gold and the titanium mineralization. Fluid inclusions study shows that the titanium mineralization was formed at the temperature range of 475–440 °C and pressure between 150 and 125 MPa from heterogeneous chloride-carbonate-sulfate fluid. The immiscible fluid fractions were represented by gaseous phase, low- and middle-concentrated solutions, as well as highly concentrated salt brine. Mineral-forming fluids were characterized by high redox-potential, due to the high concentration of sulfates. The immiscible fluid fractions differ in the content of ore elements. Highly concentrated fluid fractions contain increased concentrations of S, Cu, Mo, Fe, Pb, Zn, U, and Au, and low-concentrated fluid fractions containing U, Th, As, and Au. © 2017 Elsevier B.V.
Ключевые слова: Temperature range; Rutile and anatase; Redox potentials; Physicochemical conditions; Immiscible fluids; Fluid inclusion; Concentrated solution; Concentrated fluids; Zinc sulfide; Volcanic rocks; Titanium mines; Titanium dioxide; Titanium; Tectonics; Sulfur compounds; Strontium alloys; Quartz; Oxide minerals; Ore deposits; Gold deposits; Gold alloys; Gold; Copper compounds; Copper alloys; Concentration (process); Chlorine compounds; Binary alloys; Barium alloys; Ti mineralization; Fluid inclusions; Chloride-carbonate-sulfate oxidized fluids; Redox reactions; Mineralogy;
Издано: 2018
Физ. хар-ка: с.1066-1075
Цитирование: 1. Audétat, A., Günther, D., Heinrich, C.A., Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions. Science 279 (1998), 2091–2094.
2. Bilibina, T.V., Donakov, V.I., Titov, V.K., About hydrothermal uranium mineralization associated with alkaline intrusive complexes. Geol. Ore Deposits 5 (1963), 35–54.
3. Biryukov, V.M., Berdnikov, N.V., About the paragenetic connection of charoite mineralization with alkaline metasomatism. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva 121:B-6 (1992), 59–76.
4. Bodnar R.J., Vityk M.O., 1994. Interhretations of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B., Ferozzotti M.L. (Eds.), Fluid inclusions in Minerals, Metods and Applications, publ. by Verginia Tech, Blacksburg, VA. 117–130.
5. Borisenko, A.S., Borovikov, A.A., Vasyukova, E.A., Pavlova, G.G., Ragozin, A.L., Prokopev, I.R., Vladykin, N.V., Oxidized magmatogene fluids: metal-bearing capacity and role in ore formation. Russ. Geol. Geophys. 52:1 (2011), 144–164.
6. Borovikov, A.A., Bul'bak, T.A., Borisenko, A.S., Ragozin, A.L., Palesskii, S.V., The behavior of ore elements in oxidized heterophase chloride and carbonate-chloride-sulfate fluids of porphyry Cu-Mo(Au) deposits (from experimental data). Russ. Geol. Geophys. 56:3 (2015), 435–445.
7. Borovikov, A.A., GoverdovskiyV, A., Borisenko, A.S., Bryanskiy, N.V., Shabalin, S.I., Composition and metal contents of ore-forming fluids of the Kalguty Mo-W(Be) deposit (Gorny Altai). Russ. Geol. Geophys. 57:4 (2016), 507–518.
8. Bullach, A.G., To the genesis of charoite. Zapiski Vserosoyuznogo Mineralogicheskogo Obshchestva 113:2 (1984), 226–228.
9. Günther, D., Heinrich, C.A., Enhanced sensitivity in laser ablation ICP-mass-spectrometry using helium-argon mixtures as aerosol carrier. J. Anal. Atomic Spectrosc. 14 (1999), 1363–1368.
10. Günther, D., Frischknecht, R., Heinrich, C.A., Kahlert, H.-J., Capabilities of an argon fluoride 193 nm Excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. J. Anal. Atomic Spectrosc. 12 (1997), 939–944.
11. Günther, D., Audétat, A., Frischknecht, R., Heinrich, C.A., Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS). J. Anal. Atomic Spectrosc. 13 (1998), 263–270.
12. Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audétat, A., Günther, D., Hattendorf, B., Bleiner, D., Guillong, M., Horn, I., Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 67 (2003), 3473–3497.
13. Kogan, V.B., Ogorodnikov, S.K., Kafarov, V.V., 1969. Triple and multi-component systems formed by inorganic substances, In: Kafarov, V.V. (Ed.), Handbook of Solubility, 3, 2, pp 626–629 (in Russian).
14. Konev, A.A., Vorobyov, E.I., Lazebnik, K.A., 1996. Mineralogy of the Murunskiy alkaline massif. In: Feoktistov, G.D. (Ed.). Novosibirsk, p 221.
15. Longerich, H.P., Jackson, S.E., Günther, D., Laser ablation inductively coupled plasma mass-spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. Atomic Spectrosc. 11:9 (1996), 899–904.
16. Maximov, E.P., Nikitin, V.M., Uyutov, V.I., The Central Aldan gold-uranium ore magmatogenic system, Aldan-Stanovoy shield, Russia. Russian Journal of Pacific Geology 4:2 (2010), 95–115.
17. Nikolaeva, I.V., Palesskii, S.V., Kozmenko, O.A., Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 46:10 (2008), 1016–1022.
18. Panina, L.I., Motorina, I.V., Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. Geochem. Int. 46:5 (2008), 448–464.
19. Prokofiev, V.Y., Vorobiev, E.I., P-T-conditions for the formation of the strontium-barium carbonatite, the charoitic rock and the torgalite of the Murunskiy alkaline massif (Eastern Siberia). Geochem. Int. 10 (1991), 1444–14459.
20. Reyf, F.G., Direct evolution of W-rich brines from crystallizing melt within the Mariktikan granite pluton, west Transbaikalia. Mineral. Deposita 32 (1997), 475–490.
21. Roedder, E., 1984. Interpretation and Utilization of Inclusion Measurements – Compositional Data on Liquid and Gas Inclusions. In: Paul H. Ribbe (Ed.), Fluid Inclusions. Rev. Mineral., 12, 8, pp 221–250, doi: 10.2138/rmg.1984.12.8.
22. Rogova, V.P., 1980. Conditions for the formation of charoite rock. In: Savkevich, S.S. (Ed.), Samotzvtu. Gem Minerals: Proceedings of the XI general meeting of IMA (Novosibirsk, 4–10 september, 1978). Leningrad, Nauka, pp. 79–87.
23. Ulrich, T., Günther, D., Heinrich, C.A., The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ. Geol. 96 (2001), 1743–1774.
24. Valyashko, V.M., 2004. Chapter 15 – Phase equilibria of water-salt systems at high temperatures and pressures, In: Donald A. Palmer, Roberto Fernández-Prini, Allan H. Harvey (Eds.), Aqueous Systems at Elevated Temperatures and Pressures, Physical Chemistry in Water, Steam and Hydrothermal Solutions, pp. 597–641, doi: 10.1016/B978-012544461-3/50016-8.
25. Vladykin, N.V., Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves. Russ. Geol. Geophys. 50:12 (2009), 1119–1128.
26. Vorobyev, E.I. 2008. In: Charoit. Zorina L.D. (Ed.), Novosibirsk, 140.
27. Vorobyev, E.I., Konyev, A.A., Malyshok, Y.V., Afonina, G., Sapozhnikov, F., Tausonite SrTiO3, a new mineral of the perovskite group. Zapiski Vsesoyusnogo Mineralogicheskogo Obshchestva 113 (1984), 83–89.