Инд. авторы: Zhimulev E.I, Chepurov A.I., Sonin V.M., Litasov K.D., Chepurov A.A.
Заглавие: Experimental modeling of percolation of molten iron through polycrystalline olivine matrix at 2.0–5.5 GPa and 1600°C
Библ. ссылка: Zhimulev E.I, Chepurov A.I., Sonin V.M., Litasov K.D., Chepurov A.A. Experimental modeling of percolation of molten iron through polycrystalline olivine matrix at 2.0–5.5 GPa and 1600°C // High Pressure Research. - 2018. - Vol.38. - Iss. 2. - P.153-164. - ISSN 0895-7959. - EISSN 1477-2299.
Идентиф-ры: DOI: 10.1080/08957959.2018.1458847; РИНЦ: 35538099; SCOPUS: 2-s2.0-85045832486; WoS: 000431696500006;
Реферат: eng: The present work was aimed to understand the role of light elements for the penetration of Fe melt through the olivine matrix at high P–T parameters. We studied the mechanism of Fe melt percolation through the olivine matrix, whose interstices are filled with carbon and sulfur. The experiments were performed using a ‘split-sphere’ type multi-anvil high pressure apparatus at pressures 2.0 and 5.5 GPa and a temperature of 1600°C. It was demonstrated that the Fe melt penetrated through the olivine matrix at a relatively high rates in the presence of carbon or sulfur in the interstices. The percolation occurs due to fast dissolution of the light elements into Fe melt and filling of these interstices by the melt. © 2018 Informa UK Limited, trading as Taylor & Francis Group.
Ключевые слова: carbon; Earth’s core; high pressures–high temperatures; Iron; melt percolation; sulfur; Carbon; High pressure engineering; Iron; Olivine; Silicate minerals; Polycrystalline; Multi-anvil high-pressure apparatus; Melt-through; Melt percolations; Light elements; High temperature; Fast dissolutions; Experimental modeling; Sulfur; Solvents;
Издано: 2018
Физ. хар-ка: с.153-164
Цитирование: 1. Ringwood AE., Origin of the Earth and Moon. New York (NY): Springer; 1979.
2. Guyot F., Earth’s innermost secrets. Nature. 1994;369:360–361. doi: 10.1038/369360a0
3. Wood BJ, Walter MJ, Wade J., Accretion of the Earth and segregation of its core. Nature. 2006;441:825–833. doi: 10.1038/nature04763
4. Javoy M, Kaminski E, Guyot F, et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet Sci Lett. 2010;293:259–268. doi: 10.1016/j.epsl.2010.02.033
5. Palme H, O’Neill HSC., Cosmochemical estimates of mantle composition. Treatise Geochem. 2003;2:1–38.
6. Poirier JP., Light elements in the Earth’s outer core: A critical review. Phys Earth Planet Inter. 1994;85:319–337. doi: 10.1016/0031-9201(94)90120-1
7. Campbell AJ, Seagle CT, Heinz DL, et al. Partial melting in the iron-sulfur system at high pressure: A synchrotron X-ray diffraction study. Phys Earth Planet Inter. 2007;162:119–128. doi: 10.1016/j.pepi.2007.04.001
8. Steward AJ, Schmidt MW, Van Westrenen W, et al. Mars: A new core-crystallization regime. Science. 2008;316:1323–1325. doi: 10.1126/science.1140549
9. Lodders K., Solar system abundance and condensation temperatures of the elements. Astrophys J. 2003;591:1220–1242. doi: 10.1086/375492
10. Chepurov AI, Sonin VM, Zhimulev EI, et al. On the formation of element carbon during decomposition of CaCO3at high P-T parameters under reducing conditions. Doklady Earth Sci. 2011;441(2):1738–1741. doi: 10.1134/S1028334X11120233
11. Hillgren VJ, Gessmann CK, Li J., An experimental perspective on the light element in the Earth’s core. In: Canup RM, Righter K, editors. Origin of the Earth and Moon. Tucson: The University of Arizona Press; 2000.
12. Wood BJ, Li J, Shahar A., Carbon in the core: Its influence on the properties of core and mantle. Rev Mineral Geochem. 2013;75:231–250. doi: 10.2138/rmg.2013.75.8
13. Berkley JL, Taylor GJ, Keil K, et al. The nature and origin of ureilites. Geochim Cosmochim Acta. 1980;44:1579–1597. doi: 10.1016/0016-7037(80)90119-2
14. Kerridge JF., Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. Geochim Cosmochim Acta. 1985;49:1707–1714. doi: 10.1016/0016-7037(85)90141-3
15. Dreibus G, Palme H., Cosmochemical constrains on the sulphur content in the Earth’s core. Geochim Cosmochim Acta. 1995;60:1125–1130. doi: 10.1016/0016-7037(96)00028-2
16. McDonough W., Compositional model for the Earth’s core. Treatise Geochem. 2003;2:568.
17. Chabot NL., Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochim Cosmochim Acta. 2004;68:3607–3618. doi: 10.1016/j.gca.2004.03.023
18. Wade J, Wood BJ., Core formation and oxidation state of the Earth. Earth Planet Sci Lett. 2005;236:78–95. doi: 10.1016/j.epsl.2005.05.017
19. Huang H, Fei Y, Cai L, et al. Evidence for an oxygen-depleted liquid outer core of the Earth. Nature. 2011;479:513–516. doi: 10.1038/nature10621
20. Terasaki H, Frost DJ, Rubie DC, et al. Interconnectivity of Fe-O-S liquid in polycrystalline silicate perovskite at lower mantle conditions. Phys Earth Planet Inter. 2007;161:170–176. doi: 10.1016/j.pepi.2007.01.011
21. Terasaki H, Frost DJ, Rubie DC, et al. Percolative core formation in planetesimals. Earth Planet Sci Lett. 2008;273:132–137. doi: 10.1016/j.epsl.2008.06.019
22. Terasaki H, Frost DJ, Rubie DC, et al. The effect of oxygen and sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: implications for Martian core formation. Earth Planet Sci Lett. 2005;232:379–392. doi: 10.1016/j.epsl.2005.01.030
23. Shannon MC, Agee CB., Percolation of core melts at lower mantle conditions. Science. 1998;280:1059–1061. doi: 10.1126/science.280.5366.1059
24. Golabek GJ, Schmeling H, Tackley PJ., Earth’s core formation aided by flow channeling instabilities induced by iron diapirs. Earth Planet Sci Lett. 2008;271:24–33. doi: 10.1016/j.epsl.2008.02.033
25. Zhimulev EI, Chepurov AI, Sonin VM, et al. Migration of molten iron through an olivine matrix in the presence of carbon at high P-T parameters (experimental data). Doklady Earth Sci. 2015;463(1):677–679. doi: 10.1134/S1028334X15070065
26. Chepurov AI, Fedorov II, Sonin VM., Experimental study of diamond formation at high P-T parameters. Geol Geofiz. 1998;39(2):234–244.
27. Chepurov AI, Tomilenko AA, Zhimulev EI, et al. The conservation of an aqueous fluid in inclusions in minerals and their interstices at high P-T parameters during the decomposition of antigorite. Rus Geol Geophys. 2012;53:305–320. doi: 10.1016/j.rgg.2012.02.002
28. Tomilenko AA, Chepurov AI, Sonin VM, et al. The synthesis of methane and heavier hydrocarbons in the system graphite-iron-serpentine at 2 and 4 GPa and 1200°C. High Temp–High Press. 2015;44:451–465.
29. Decker DL, Basset WA, Merrill L, et al. High-pressure calibration a critical review. J Phys Chem Ref Data. 1972;1:1–79. doi: 10.1063/1.3253105
30. Van Bargen N, Waffs HS., Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res. 1986;91:9261–9276. doi: 10.1029/JB091iB09p09261
31. Usselman T., Experimental approach to the state of the core: Part 1. The liquids relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kbar. Am J Sci. 1975;275:278–290. doi: 10.2475/ajs.275.3.278
32. Dasgupta R, Buono A, Whelan G, et al. High-pressure melting relations in Fe-C-S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim Cosmochim Acta. 2009;73:6678–6691. doi: 10.1016/j.gca.2009.08.001
33. Chabot NL, Campbell AJ, McDonough WF, et al. The Fe-C system at 5 GPa and implications for Earth’s core. Geochim Cosmochim Acta. 2008;72:4146–4158. doi: 10.1016/j.gca.2008.06.006
34. Komabayashi T., Thermodynamic of melting relations in the system Fe-FeO at high pressure: implication for oxygen in the Earth’s core. J Geophys Res Solid Earth. 2014;119:4164–4177. doi: 10.1002/2014JB010980
35. San-Martin A, Manchester F., The Fe-H (iron-hydrogen) system. Bull Alloy Phase Diagr. 1990;11:173–184. doi: 10.1007/BF02841704
36. Okuchi T., Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science. 1997;278:1781–1784. doi: 10.1126/science.278.5344.1781
37. Roskosz M, Bouhifd MA, Jephcoat AP, et al. Nitrogen solubility in metal and silicate at high pressire and temperature. Geochim Cosmochim Acta. 2013;121:15–28. doi: 10.1016/j.gca.2013.07.007
38. Stevenson DJ., Fluid dynamics of core formation. In: Newsom HE, Drake JH, editors. Origin of the Earth. New York (NY): Oxford University Press; 1990.
39. Artini C, Muolo ML, Passerone A., Diamond-metal interfaces in cutting tools: a review. J Mater Sci. 2012;47:3252–3264. doi: 10.1007/s10853-011-6164-6
40. Chepurov AI, Sonin VM, Dereppe J-M., The channeling action of iron particles in the catalyzed hydrogenation of synthetic diamond. Diamond Relat Mater. 2000;9:1435–1438. doi: 10.1016/S0925-9635(00)00256-9
41. Chepurov AI, Sonin VM, Shamaev PP, et al. The action of iron particles at catalyzed hydrogenation of natural diamond. Diamond Relat Mater. 2002;11:1592–1596. doi: 10.1016/S0925-9635(02)00106-1
42. Sonin VM, Chepurov AI, Fedorov II., The action of iron particles at catalyzed hydrogenation of {100} and {110} faces of synthetic diamond. Diamond Relat Mater. 2003;12:1559–1562. doi: 10.1016/S0925-9635(03)00242-5
43. Walter MJ, Kohn SC, Araujo D, et al. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science. 2011;334:54–57. doi: 10.1126/science.1209300
44. Wirth R, Dobrzhinetskaya L, Harte B, et al. High-Fe(Mg,Fe)O inclusions in diamond apparently from the lowermost mantle. Earth Planet Sci Lett. 2014;404:365–375. doi: 10.1016/j.epsl.2014.08.010
45. Chepurov AI, Fedorov II, Sonin VM, et al. Diamond formation during reduction of oxide- and silicate-carbon systems at high P-T conditions. Eur J Mineral. 1999;11:355–362. doi: 10.1127/ejm/11/2/0355
46. Kaminsky FV, Wirth R., Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can Mineral. 2011;49:555–572. doi: 10.3749/canmin.49.2.555
47. Frost D, McCammon CA., The redox state of Earth`s mantle. Ann Rev Earth Planet Sci. 2008;36:389–420. doi: 10.1146/annurev.earth.36.031207.124322
48. Frost DJ, Liebske C, Langenhorst F, et al. Experimental evidence for the existence of iron-rich metal in the Earth`s lower mantle. Nature. 2004;428:409–412. doi: 10.1038/nature02413
49. Smith EM, Shirey SB, Nestola F, et al. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science. 2016;354:1403–1405. doi: 10.1126/science.aal1303
50. Jakubowski T, Karczemska A, Kozanecki M., Diamond in ureilites. Meteorites. 2011;0:3–8.
51. Rubie DC, Melosh HJ, Reid JE, et al. Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth and Planet Sci Lett. 2003;205:239–255. doi: 10.1016/S0012-821X(02)01044-0
52. Karato SI, Murthy VR., Core formation and chemical equilibrium in the Earth. Part I: Physical considerations. Phys Earth Planet Inter. 1997;100:61–79. doi: 10.1016/S0031-9201(96)03232-3
53. Rubie DC, Nimmo F, Melosh HJ., Formation of the Earth’s core. In: Stevenson D, editor. Treatise on geophysics. V. 9-Evolution of the Earth. Amsterdam: Elsevier; 2007.
54. Zhimulev EI, Sonin VM, Mironov AM, et al. Effect of sulfur concentration of diamond crystallization in the Fe-S-C system at 5.3–5.5 GPa and 1300–1370°C. Geochem Int. 2016;54(5):415–422. doi: 10.1134/S0016702916050116