Инд. авторы: Mikhlin Y.L., Pal'yanova G.A., Tomashevich Y.V., Vishnyakova E.A., Vorobyev S.A., Kokh K.A.
Заглавие: XPS and Ag L3-edge XANES characterization of silver and silver–gold sulfoselenides
Библ. ссылка: Mikhlin Y.L., Pal'yanova G.A., Tomashevich Y.V., Vishnyakova E.A., Vorobyev S.A., Kokh K.A. XPS and Ag L3-edge XANES characterization of silver and silver–gold sulfoselenides // Journal of Physics and Chemistry of Solids. - 2018. - Vol.116. - P.292-298. - ISSN 0022-3697.
Идентиф-ры: DOI: 10.1016/j.jpcs.2018.01.047; РИНЦ: 35497320; SCOPUS: 2-s2.0-85041388113; WoS: 000428097600038;
Реферат: eng: Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1–x (0 < x < 1), AgAuS, and Ag3AuSxSe2–x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20–25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal–chalcogen and especially the Au–Ag interatomic distances in substances having similar coordination geometry. © 2018 Elsevier Ltd
Ключевые слова: Absorption spectra; X-ray photoelectron spectroscopy; Electronic structure; Silver sulfoselenides; Silver–gold sulfoselenides; X-ray absorption near-edge structure; Binding energy; Binding sites; Electronic structure; Gold; Gold compounds; Photoelectron spectroscopy; Photoelectrons; Photons; Selenium compounds; Superconducting materials; Temperature; X ray absorption; X ray photoelectron spectroscopy; X ray absorption near edge structure; Positive charges; Physicochemical property; Negative charge; Magnetoresistive; Low temperatures; Inter-atomic distances; Coordination geometry; X ray analysis; X ray absorption near edge structure spectroscopy; Silver compounds;
Издано: 2018
Физ. хар-ка: с.292-298
Цитирование: 1. Davidson, D.F., Selenium in some epithermal deposits of antimony, mercury and silver and gold. Geol. Surv. Bull. 1112-A (1960), 1–16.
2. Johan, Z., Kvacek, M., Picot, P., Pierrot, R., Fischesserite, first gold selenide, isostructural with petzite. Bull. la Société française Minéralogie Cristallogr 94 (1971), 381–384.
3. Petruk, W., Owens, D.R., Stewart, J.M., Murray, E.J., Observations on acanthite, aguilarite and naumannite. Can. Mineral. 12 (1974), 365–369.
4. Shikazono, N., Selenium content of acanthite and chemical environments of Japanese vein-type deposits. Econ. Geol. 73 (1978), 524–533.
5. Barton, M.D., The Ag-Au-S system. Econ. Geol. 75 (1980), 303–316.
6. Cocker, H.A., Mauk, J.L., Rabone, S.D.C., The origin of Ag–Au–S–Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand. Miner. Deposita 48 (2013), 249–266.
7. Osadchii, E.G., Rappo, O.A., Determination of standard thermodynamic properties of sulfides in the Ag–Au–S system by means of a solid-state galvanic cell. Am. Mineral. 89 (2004), 1405–1410.
8. Pal'yanova, G.A., Kokh, K.A., Seryotkin, Yu.V., Formation of gold and silver sulfides in the system Ag–Au–S. Russ. Geol. Geophys. 52 (2011), 443–449.
9. Seryotkin, Yu.V., Pal'yanova, G.A., Savva, N.E., Sulfur–selenium isomorphous substitution and morphotropic transition in the Ag3Au(Se,S)2 series. Russ. Geol. Geophys. 54 (2013), 646–651.
10. Palyanova, G., Karmanov, N., Savva, N., Sulfidation of native gold. Am. Mineral. 99 (2014), 1095–1103.
11. Pal'yanova, G.A., Kravtsova, R.G., Zhuravkova, T.V., Ag2(S,Se) solid solutions in the ores of the Rogovik gold-silver deposit (northeastern Russia). Russ. Geol. Geophys. 56 (2015), 1738–1748.
12. Bindi, L., Stanley, C.J., Seryotkin, Y.V., Bakakin, V.V., Pal'yanova, G.A., Kokh, K.A., The crystal structure of uytenbogaardtite, Ag3AuS2, and its relationships with gold and silver sulfides-selenides. Mineral. Mag. 80 (2016), 1031–1040.
13. Kobayashi, M., Review on structural and dynamical properties of silver chalcogenides. Solid State Ionics 39 (1990), 121–149.
14. Kikuchi, H., Iyetomi, H., Hasegawa, A., Insight into the origin of superionic conductivity from electronic structure theory. J. Phys. Condens. Mater 10 (1998), 11439–11448.
15. Hull, S., Keen, D.A., Sivia, D.S., Madden, P.A., Wilson, M., The high-temperature superionic behaviour of Ag2S. J. Phys. Condens. Matter 14 (2002), L9–L17.
16. Kobayashi, M., From caterpillar model to solid-state ionics. Solid State Ionics 174 (2004), 57–66.
17. Kashida, S., Watanabe, N., Hasegawa, T., Iida, H., Mori, M., Savrasov, S., Electronic structure of Ag2S, band calculation and photoelectron spectroscopy. Solid State Ionics 158 (2003), 167–175.
18. Fang, C.M., de Groot, R.A., Wiegers, G.A., Ab initio band structure calculations of the low-temperature phases of Ag2Se, Ag2Te and Ag3AuSe2. J. Phys. Chem. Solid. 63 (2002), 457–464.
19. Xiao, C., Xu, J., Li, K., Feng, J., Yang, J., Xie, Y., Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. J. Am. Chem. Soc. 134 (2012), 4287–4293.
20. Day, T., Drymiotis, F., Zhang, T., Rhodes, D., Shi, X., Chen, L., Snyde, G.J., Evaluating the potential for high thermoelectric efficiency of silver selenide. J. Mater. Chem. C 1 (2013), 7568–7573.
21. Xu, R., Husmann, A., Rosenbaum, T.F., Saboungi, M.L., Enderby, J.E., Littlewood, P.B., Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390 (1990), 57–60.
22. Alekperova, S.M., Akhmedov, I.A., Gadzhieva, G.S., Dzhalilova, K.D., Giant magnetoresistance and kinetic phenomena in n-Ag4SSe in the vicinity of a phase transition. Phys. Solid State 49 (2007), 512–515.
23. Dalmases, M., Ibáňez, M., Torruella, P., Fernàndez-Altable, V., López-Conesa, L., Cadavid, D., Piveteau, L., Nachtegaal, M., Llorca, J., Ruiz-González, M.L., Estradé S., Peiró F., Kovalenko, M.V., Cabot, A., Figuerola, A., Synthesis and thermoelectric properties of noble metal ternary chalcogenide systems of Ag−Au−Se in the forms of alloyed nanoparticles and colloidal nanoheterostructures. Chem. Mater. 28 (2016), 7017–7028.
24. Hong, G., Robinson, J.T., Zhang, Y., Diao, S., Antaris, A.L., Wang, Q., Dai, H., In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 51 (2012), 9818–9821.
25. Zhang, Y., Hong, G., Zhang, Y., Chen, G., Li, F., Dai, H., Wang, Q., Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6 (2012), 3695–3702.
26. Yang, Y.T., Tang, Y., Liu, L., Lv, X., Wang, Q., Ke, H., Deng, Y., Yang, H., Yang, X., Liu, G., Zhao, Y., Chen, H., Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 11 (2017), 1848–1857.
27. Li, X., Schaak, R.E., Reactive AgAuS and Ag3AuS2 synthons enable the sequential transformation of spherical nanocrystals into asymmetric multicomponent hybrid nanoparticles. Chem. Mater. 29 (2017), 4153–4160.
28. Pingitore, N.E., Ponce, B.F., Eastman, M.P., Moreno, F., Podpora, C., Solid solutions in the system Ag2S–Ag2Se. J. Mater. Res. 7 (1992), 2219–2224.
29. Pingitore, N.E., Ponce, B.F., Estrada, L., Eastman, M.P., Yuan, H.L., Porter, L.C., Estrada, G., Calorimetric analysis of the system Ag2S–Ag2Se between 25 and 250 °C. J. Mater. Res. 8 (1993), 3126–3130.
30. Feng, D., Taskinen, P., Thermodynamic properties of Ag3AuSe2 from 300 to 500 K by a solid state galvanic cell. J. Alloy. Comp. 583 (2014), 176–179.
31. Pal'yanova, G.A., Chudnenko, K.V., Zhuravkova, T.V., Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se. Thermochim. Acta 575 (2014), 90–96.
32. Drebushchak, V.A., Pal'yanova, G.A., Seryotkin, Yu.V., Drebushchak, T.N., Probable metal–insulator transition in Ag4SSe. J. Alloy. Comp. 622 (2015), 236–242.
33. Bindi, L., Pingitore, N.E., On the symmetry and crystal structure of aguilarite, Ag4SeS. Mineral. Mag. 77 (2013), 21–31.
34. Seryotkin, Yu.V., Bakakin, V.V., Pal'yanova, G.A., Kokh, K.A., Synthesis and crystal structure of silver-gold sulfide AgAuS. Four-fold interpenetrated tree-dimensional [(Au,Ag)10S8]-networks. CrystEngComm 16 (2014), 1675–1680.
35. Seryotkin, Yu.V., Bakakin, V.V., Pal'yanova, G.A., Kokh, K.A., Synthesis and crystal structure of the trigonal silver(I) dithioaurate(I), Ag3AuS2. Cryst. Growth Des. 11 (2011), 1062–1066.
36. Seryotkin, Yu.V., Pal'yanova, G.A., Kokh, K.A., Sulfur–selenium isomorphous substitution and morphotropic transition in the Ag2(Se,S) series. J. Alloy. Comp. 639 (2015), 89–93.
37. Palyanova, G.A., Seryotkin, Yu.V., Kokh, K.A., Bakakin, V.V., Isomorphism and solid solutions among Ag- and Au-selenides. J. Solid State Chem. 241 (2016), 157–163.
38. Romand, M., Roubin, M., Deloume, J.P., ESCA studies of some copper and silver selenides. J. Electron. Spectrosc. Relat. Phenom. 13 (1978), 229–242.
39. Mikhlin, Y.L., Nasluzov, V.A., Romanchenko, A.S., Shor, A.M., Pal'yanova, G.A., XPS and DFT studies of the electronic structures of AgAuS and Ag3AuS. J. Alloy. Comp. 617 (2014), 314–321.
40. Ji, C., Zhang, Y., Zhang, X., Wang, P., Shen, H., Gao, W., Wang, Y., Yu, W.W., Synthesis and characterization of Ag2SxSe1−x nanocrystals and their photoelectrochemical property. Nanotechnology, 28, 2017, 065602.
41. Kaushik, V.K., XPS core level spectra and Auger parameters for some silver compounds. J. Electron. Spectrosc. Relat. Phenom. 56 (1991), 273–277.
42. Ferraria, A.M., Carapeto, A.P., do Rego, A.M.B., X-ray photoelectron spectroscopy: silver salts revisited. Vacuum 86 (2012), 1988–1991.
43. Mikhlin, Yu.L., Vishnyakova, E.A., Romanchenko, A.S., Saikova, S.V., Likhatski, M.N., Larichev, Yu.V., Tuzikov, F.V., Zaikovskii, V.I., Zharkov, S.M., Oxidation of Ag nanoparticles in aqueous media: effect of particle size and capping. Appl. Surf. Sci. 297 (2014), 75–83.
44. Norman, D., Garg, K.B., Durham, P.J., The X-ray absorption near edge structure of transition metal oxides: a one-electron interpretation. Solid State Commun. 56 (1985), 895–898.
45. Behrens, P., Aßmann, S., Bilow, U., Linke, C., Jansen, M., Electronic structure of silver oxides investigated by Ag L XANES spectroscopy. Z. Anorg. Allg. Chem. 625 (1999), 111–116.
46. Šipr, O., Rocca, F., Dalba, G., Real-space multiple-scattering analysis of Ag L1- and L3-edge XANES spectra of Ag2O. J. Synchrotron Radiat. 6 (1999), 770–772.
47. Šipr, O., Probability density of wave function of excited photoelectron: understanding XANES features. J. Synchrotron Radiat. 8 (2001), 232–234.
48. Allen, J.P., Scanlon, D.O., Watson, G.W., Electronic structures of silver oxides. Phys. Rev. B, 84, 2011, 115141.
49. Miyamoto, T., Niimi, H., Kitajima, Y., Naito, T., Asakura, K., Ag L3-edge X-ray absorption near-edge structure of 4d10 (Ag+) compounds: origin of the edge peak and its chemical relevance. J. Phys. Chem. 114 (2010), 4093–4098.
50. Miyamoto, T., Kitajima, Y., Asakura, K., What is the origin for peaks at the L3 XANES spectra of AgCl?. E-J. Surf. Sci. Nanotech. 10 (2012), 609–612.
51. Kozachuk, M.S., Martin, R.R., Sham, T.K., Robinson, M., Nelson, A.J., The application of XANES for the examination of silver, gold, mercury, and sulfur on the daguerreotype surface. Can. J. Chem. 95 (2017), 1156–1162.
52. Levin, K., Ehrenreich, H., Model Hamiltonian description of Ag-Au alloys in the coherent-potential approximation. Phys. Rev. B 3 (1971), 4172–4188.
53. Lu, Z.W., Wei, S.-H., Zunger, A., Electronic structure of random Ag0.5Pd0.5 and Ag0.5Au0.5 alloys. Phys. Rev. B 44 (1991), 10470–10484.
54. Bzowski, A., Sham, T.K., Yiu, Y.M., Ag L-edge x-ray-absorption near-edge-structure study of charge redistribution at the Ag site in Au-Ag alloys. Phys. Rev. B 49 (1994), 13776–13779.
55. Drube, W., Treusch, R., Sham, T.K., Bzowski, A., Soldatov, A.V., Sublifetime-resolution Ag L3-edge XANES studies of Ag-Au alloys. Phys. Rev. B 58 (1998), 6871–6876.
56. Drube, W., Sham, T.K., Kravtsova, A., Soldatov, A.V., Fine structure of unoccupied Ag d states near the Fermi level in Ag and AgPd studied by high-resolution partial Auger yield spectroscopy at the Ag L3 edge. Phys. Rev. B, 67, 2003, 035122.
57. Gorgoi, M., Svensson, S., Schäfers, F., Öhrwall, G., Mertin, M., Bressler, P., Karis, O., Siegbahn, H., Sandell, A., Rensmo, H., Doherty, W., Jung, C., Braun, W., Eberhardt, W., The high kinetic energy photoelectron spectroscopy facility at BESSY progress and first results. Nucl. Instrum. Met. A 601 (2009), 48–53.
58. Ravel, B., Newville, M., Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12 (2005), 537–541.
59. Moretti, G., Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J. Electron. Spectrosc. Relat. Phenom. 95 (1998), 95–144.
60. Lide, D.R., Taylor and Francis, (eds.) CRS Handbook of Chemistry and Physics, 87th Edition, 2007, CRS Press p.9.77.
61. Cole, R.J., Brooks, N.J., Weightman, P., Francis, S.M., Bowker, M., The physical and electronic structure of the Cu85Pd15(110) surface; clues from the study of bulk CuxPd1–x alloys. Surf. Rev. Lett. 3 (1996), 1763–1772.
62. Mason, M.G., Electronic structure of supported small metal clusters. Phys. Rev. B 27 (1983), 748–762.
63. Nishimura, S., Dao, A.T.N., Mott, D., Ebitani, K., Maenosono, S., X-ray absorption near-edge structure and X-ray photoelectron spectroscopy studies of interfacial charge transfer in gold-silver-gold double-shell nanoparticles. J. Phys. Chem. C 116 (2012), 4511–4516.