Инд. авторы: Rezvukhin D.I., Malkovets V.G., Sharygin I.S., Tretiakova I.G., Griffin W.L., O'Reilly S.Y.
Заглавие: Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism
Библ. ссылка: Rezvukhin D.I., Malkovets V.G., Sharygin I.S., Tretiakova I.G., Griffin W.L., O'Reilly S.Y. Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism // Lithos. - 2018. - Vol.308-309. - P.181-195. - ISSN 0024-4937. - EISSN 1872-6143.
Идентиф-ры: DOI: 10.1016/j.lithos.2018.02.026; РИНЦ: 35484044; SCOPUS: 2-s2.0-85044121178; WoS: 000446791000012;
Реферат: eng: Cr-pyrope xenocrysts and associated inclusions of crichtonite-group minerals from the Internatsionalnaya kimberlite pipe were studied to provide new insights into processes in the lithospheric mantle beneath the Mirny kimberlite field, Siberian craton. Pyropes are predominantly of lherzolitic paragenesis (Cr2O3 2–6 wt%) and have trace-element spectra typical for garnets from fertile mantle (gradual increase in chondrite-normalized values from LREE to MREE-HREE). Crichtonite-group minerals commonly occur as monomineralic elongated inclusions, mostly in association with rutile, Mg-ilmenite and Cr-spinel within individual grains of pyrope. Sample INT-266 hosts intergrowth of crichtonite-group mineral and Cl-apatite, while sample INT-324 contains polymineralic apatite- and dolomite-bearing assemblages. Crichtonite-group minerals are Al-rich (1.1–4.5 wt% Al2O3), moderately Zr-enriched (1.3–4.3 wt% ZrO2), and are Ca-, Sr-, and occasionally Ba-dominant in terms of A-site occupancy; they also contain significant amounts of Na and LREE. T-estimates and chemical composition of Cr-pyropes imply that samples represent relatively low-T peridotite assemblages with ambient T ranging from 720 to 820°С. Projected onto the 35 mW/m2 cratonic paleogeotherm for the Mirny kimberlite field (Griffin et al., 1999b. Tectonophysics 310, 1–35), temperature estimates yield a P range of ~34–42 kbar (~110–130 km), which corresponds to a mantle domain in the uppermost part of the diamond stability field. The presence of crichtonite-group minerals in Cr-pyropes has petrological and geochemical implications as evidence for metasomatic enrichment of some incompatible elements in the lithospheric mantle beneath the Mirny kimberlite field. The genesis of Cr-pyropes with inclusions of crichtonite-group minerals is attributed to the percolation of Ca-Sr-Na-LREE-Zr-bearing carbonate-silicate metasomatic agents through Mg- and Cr-rich depleted peridotite protoliths. The findings of several potentially new members of the crichtonite group as inclusions in garnet extend existing knowledge on the compositions and occurrences of exotic titanates stable in the lithospheric mantle. © 2018 Elsevier B.V.
Ключевые слова: Russian Federation; pyrope; paragenesis; metasomatism; mantle structure; kimberlite; crystal chemistry; Siberian craton; Pyrope; Mantle metasomatism; Kimberlite; Inclusion; Crichtonite-group minerals; chromium; Siberian Craton;
Издано: 2018
Физ. хар-ка: с.181-195
Цитирование: 1. Agashev, A.M., Pokhilenko, N.P., Tolstov, A.V., Polyanichko, V.V., Mal'kovets, V.G., Sobolev, N.V., A new data on the age of kimberlites from the Yakutian diamondiferous province, Russia. Doklady Earth Sciences 399 (2004), 95–99.
2. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., Sharygin, I.S., Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160-161 (2013), 201–215.
3. Agashev, A.M., Orihashi, Y., Pokhilenko, N.P., Serov, I.V., Tolstov, A.V., Nakai, S., Age of Mirny field kimberlites (Siberia) and application of rutile and titanite for U-Pb dating of kimberlite emplacement by LA-ICP-MS. Geochemical Journal 50 (2016), 431–438.
4. Alifirova, T.A., Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk. 2015 Ph.D. Thesis.
5. Alifirova, T.A., Pokhilenko, L.N., Ovchinnikov, Y.I., Donnelly, C.L., Riches, A.J.V., Taylor, L.A., Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. International Geology Review 54 (2012), 1071–1092.
6. Alifirova, T.A., Pokhilenko, L.N., Korsakov, A.V., Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia. Lithos 226 (2015), 31–49.
7. Almeida, V., Janasi, V., Svisero, D., Nannini, F., Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism. Central European Journal of Geosciences 6 (2014), 614–632.
8. Armbruster, T., Kunz, M., Cation arrangement in a unusual uranium-rich senaite: crystal structure study at 130 K. European Journal of Mineralogy 2 (1990), 163–170.
9. Barkov, A.Y., Fleet, M.E., Martin, R.F., Men'shikov, Y.P., Sr-Na-REE titanates of the crichtonite group from a fenitized megaxenolith, Khibina alkaline complex, Kola Peninsula, Russia: first occurrence and implications. European Journal of Mineralogy 18 (2006), 493–502.
10. Biagioni, C., Orlandi, P., Pasero, M., Nestola, F., Bindi, L., Mapiquiroite, (Sr,Pb)(U,Y)Fe2(Ti,Fe3+)18O38, a new member of the crichtonite group from the Apuan Alps, Tuscany, Italy. European Journal of Mineralogy 26 (2014), 427–437.
11. Botkunov, A.I., Garanin, V.K., Krot, A.N., Kudryavtseva, G.P., Mineral inclusions in garnets from kimberlites of Yakutia: their genetic and practical significance. International Geology Review 29 (1987), 163–177.
12. Bulanova, G.P., Muchemwa, E., Pearson, D.G., Griffin, B.J., Kelley, S.P., Klemme, S., Smith, C.B., Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe) – evidence for metasomatic conditions of growth. Lithos 77 (2004), 181–192.
13. Burgess, S.R., Harte, B., Tracing lithosphere evolution through the analysis of heterogeneous G9–G10 garnets in peridotite xenoliths, II: REE chemistry. Journal of Petrology 45 (2004), 609–634.
14. Coltorti, M., Beccaluva, L., Bonadiman, C., Salvini, L., Siena, F., Glasses in mantle xenoliths as geochemical indicators of metasomatic agents. Earth and Planetary Science Letters 183 (2000), 303–320.
15. Contini, S., Venturelli, G., Toscani, L., Capedri, S., Barbieri, M., Cr-Zr-armalcolite-bearing lamproites of Cancarix, SE Spain. Mineralogical Magazine 57 (1993), 203–216.
16. Davis, G.L., Sobolev, N.V., Kharkiv, A.D., New data on the age of Yakutian kimberlites (U–Pb zircon method). Doklady Akademii Nauk SSSR 254 (1980), 175–179 (in Russian).
17. Day, H.W., A revised diamond-graphite transition curve. American Mineralogist 97 (2012), 52–62.
18. Dong, Z., Zhou, J., Lu, Q., Peng, Z., Yimengite, K(Cr,Ti,Fe,Mg)12O19 – a new mineral. Kexue Tongbao 29 (1984), 920–923.
19. Erlank, A.J., Waters, F.G., Hawkesworth, C.J., Haggerty, S.E., Allsopp, H.L., Rickard, R.S., Menzies, M.A., Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. Mantle metasomatism, 1987, 221–311.
20. Foley, S., Höfer, H., Brey, G., High-pressure synthesis of priderite and members of the lindsleyite-mathiasite and hawthorneite-yimengite series. Contributions to Mineralogy and Petrology 117 (1994), 164–174.
21. Gatehouse, B.M., Grey, I.E., Campbell, I.H., Kelly, P., The crystal structure of loveringite - a new member of the crichtonite group. American Mineralogist 63 (1978), 28–36.
22. Gatehouse, B.M., Grey, I.E., Kelly, P.R., The crystal structure of davidite. American Mineralogist 64 (1979), 1010–1017.
23. Gatehouse, B.M., Grey, I.E., Smyth, J.R., Structure refinement of mathiasite, (K0.62Na0.14Ba0.14Sr0.101.0[Ti12.90Cr3.10Mg1.53Fe2.15Zr0.67Ca0.29(V,Nb,Al)0.3621.0O38. Acta Crystallographica Section C: Crystal Structure Communications 39 (1983), 421–422.
24. Ge, X., Fan, G., Li, G., Shen, G., Chen, Z., Ai, Y., Mianningite, (□,Pb,Ce,Na)(U4+,Mn,U6+)Fe3+ 2(Ti,Fe3+)18O38, a new member of the crichtonite group from Maoniuping REE deposit, Mianning county, southwest Sichuan, China. European Journal of Mineralogy 29 (2017), 331–338.
25. Giuliani, A., Kamenetsky, V.S., Kendrick, M.A., Phillips, D., Wyatt, B.A., Maas, R., Oxide, sulphide and carbonate minerals in a mantle polymict breccia: metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chemical Geology 353 (2013), 4–18.
26. Giuliani, A., Phillips, D., Maas, R., Woodhead, J.D., Kendrick, M.A., Greig, A., Armstrong, R.A., Chew, D., Kamenetsky, V.S., Fiorentini, M.L., LIMA U–Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth and Planetary Science Letters 401 (2014), 132–147.
27. Green, D.H., Wallace, M.E., Mantle metasomatism by ephemeral carbonatite melts. Nature 336 (1988), 459–462.
28. Grégoire, M., Lorand, J.P., O'Reilly, S.Y., Cottin, J.Y., Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: implications for the oceanic mantle budget of high-field strength elements. Geochimica et Cosmochimica Acta 64 (2000), 673–694.
29. Gregoire, M., Bell, D.R., Le Roex, A.P., Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contributions to Mineralogy and Petrology 142 (2002), 603–625.
30. Grey, I.E., Gatehouse, B.M., The crystal structure of landauite, Na[MnZn2(Ti,Fe)6Ti12]O38. The Canadian Mineralogist 16 (1978), 63–68.
31. Grey, I.E., Lloyd, D.J., The crystal structure of senaite. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry 32 (1976), 1509–1513.
32. Grey, I.E., Lloyd, D.J., White, J.S., The structure of crichtonite and its relationship to senaite. American Mineralogist 61 (1976), 1203–1212.
33. Griffin, W.L., Ryan, C.G., Trace elements in indicator minerals: area selection and target evaluation in diamond exploration. Journal of Geochemical Exploration 53 (1995), 311–337.
34. Griffin, W.L., Fisher, N.I., Friedman, J., Ryan, C.G., O'Reilly, S.Y., Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. Journal of Petrology 40 (1999), 679–704.
35. Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O'Reilly, S.Y., Natapov, L.M., Win, T.T., Kinny, P.D., Ilupin, I.P., The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310 (1999), 1–35.
36. Griffin, W.L., Shee, S.R., Ryan, C.G., Win, T.T., Wyatt, B.A., Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology 134 (1999), 232–250.
37. Griffin, W., Powell, W., Pearson, N., O'Reilly, S., GLITTER: data reduction software for laser ablation ICP-MS. Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series 40 (2008), 204–207.
38. Griffin, W.L., Pearson, N.J., Andersen, T., Jackson, S.E., O'Reilly, S.Y., Zhang, M., Sources of cratonic metasomatic fluids: In situ LA-MC-ICPMS analysis of Sr, Nd, Hf and Pb isotopes in LIMA from the Jagersfontein kimberlite. American Journal of Science 314 (2014), 435–461.
39. Grütter, H.S., Gurney, J.J., Menzies, A.H., Winter, F., An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77 (2004), 841–857.
40. Haggerty, S.E., The chemistry and genesis of opaque minerals in kimberlites. Physics and Chemistry of the Earth, 9, 1975, 295–307.
41. Haggerty, S.E., The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa – implications for metasomatism in the upper mantle. Geochimica et Cosmochimica Acta 47 (1983), 1833–1854.
42. Haggerty, S.E., Oxide mineralogy of the upper mantle. Lindsley, D.H., (eds.) Oxide Minerals: Petrologic and Magnetic Significance, 1991, 355–416.
43. Haggerty, S.E., Smyth, J.R., Erlank, A.J., Rickard, R.S., Danchin, R.V., Lindsleyite (Ba) and mathiasite (K): two new chromium-titanates in the crichtonite series from the upper mantle. American Mineralogist 68 (1983), 494–505.
44. Haggerty, S.E., Grey, I.E., Madsen, I.C., Criddle, A.J., Stanley, C.J., Erlank, A.J., Hawthorneite, Ba[Ti3Cr4Fe4Mg]O19: a new metasomatic magnetoplumbite-type mineral from the upper mantle. American Mineralogist 74 (1989), 668–675.
45. Hasterok, D., Chapman, D., Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters 307 (2011), 59–70.
46. Hoal, K.E.O., Hoal, B.G., Erlank, A.J., Shimizu, N., Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets. Earth and Planetary Science Letters 126 (1994), 303–313.
47. Howarth, G.H., Barry, P.H., Pernet-Fisher, J.F., Baziotis, I.P., Pokhilenko, N.P., Pokhilenko, L.N., Bodnar, R.J., Taylor, L.A., Agashev, A.M., Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184–187 (2014), 209–224.
48. Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., On the forbidden and the optimum crystallographic variant of rutile in garnet. Journal of Applied Crystallography 49 (2016), 1–19.
49. Ionov, D.A., Gregoire, M., Prikhod'ko, V.S., Feldspar–Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth and Planetary Science Letters 165 (1999), 37–44.
50. Jaques, A.L., O'Neill, H.S.C., Smith, C.B., Moon, J., Chappell, B.W., Diamondiferous peridotite xenoliths from the Argyle (AK1) lamproite pipe, Western Australia. Contributions to Mineralogy and Petrology 104 (1990), 255–276.
51. Jones, A.P., Smith, J.V., Dawson, J.B., Mantle metasomatism in 14 veined peridotites from Bultfontein mine, South Africa. The Journal of Geology 90 (1982), 435–453.
52. Kalfoun, F., Ionov, D., Merlet, C., HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth and Planetary Science Letters 199 (2002), 49–65.
53. Kelly, P.R., Campbell, I.H., Grey, I.E., Gatehouse, B.M., Additional data on loveringite (Ca,REE)(Ti,Fe,Cr)21O38 and mohsite discredited. Canadian Mineralogist 17 (1979), 635–638.
54. Kinny, P.D., Griffin, B.J., Heaman, L.M., Brakhfogel, F.F., Spetsius, Z.V., SHRIMP U–Pb ages of perovskite from Yakutian kimberlites. Geologiya i Geofizika 38 (1997), 91–99.
55. Konzett, J., Armstrong, R.A., Gunther, D., Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contributions to Mineralogy and Petrology 139 (2000), 704–719.
56. Konzett, J., Yang, H., Frost, D.J., Phase relations and stability of magnetoplumbite- and crichtonite-series phases under upper-mantle P-T conditions: an experimental study to 15 GPa with implications for LILE metasomatism in the lithospheric mantle. Journal of Petrology 46 (2005), 749–781.
57. Konzett, J., Wirth, R., Hauzenberger, C., Whitehouse, M., Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos 182-183 (2013), 165–184.
58. Kostrovitsky, S.I., Garanin, V.K., High-chromium titanates in pyropes of the Aldanskaya dyke (Yakutia). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 1992, 67–71 (In Russian).
59. Kushiro, I., Erlank, A.J., Stability of potassic richterite. Carnegie Institution Washington Yearbook, 68, 1970, 231–233.
60. Leost, I., Stachel, T., Brey, G.P., Harris, J.W., Ryabchikov, I.D., Diamond formation and source carbonation: mineral associations in diamonds from Namibia. Contributions to Mineralogy and Petrology 145 (2003), 15–24.
61. Litasov, K., Litasov, Y., Malkovets, V., Taniguchi, H., Mineralogical study of interstitial phase assemblages in titaniferous peridotite xenoliths from Pliocene basanites of Vitim volcanic field (Transbaikalia, Russia). Northeast Asian Studies 10 (2006), 161–175.
62. Liu, J., Guan, Y., Liu, X., Ren, X., A study of mathiasite from the Shandong kimberlite of China. Acta Mineralogica Sinica 10 (1990), 221–226 (in Chinese).
63. Logvinova, A.M., Wirth, R., Fedorova, E.N., Sobolev, N.V., Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. European Journal of Mineralogy 20 (2008), 317–331.
64. Lorand, J.P., Cottin, J.Y., Parodi, G.C., Occurrence and petrological significance of loveringite in the Western Laouni layered complex, southern Hoggar, Algeria. Canadian Mineralogist 25 (1987), 683–693.
65. Lu, Q., Peng, Z., Crystal structure of mathiasite. Acta Petrologica et Mineralogica 6 (1987), 221–230 (in Chinese).
66. Lu, Q., Zhou, H., A new progress in research on mathiasite in Mengying, Shandong, III. Oxide minerals containing the large ions Cr, Ti and Fe in the upper mantle. Acta Mineralogica Sinica 14 (1994), 343–347 (in Chinese).
67. Ludwig, K.R., Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 2003, 4.
68. Malkovets, V.G., Griffin, W.L., O'Reilly, S.Y., Wood, B.J., Diamond, subcalcic garnet, and mantle metasomatism: kimberlite sampling patterns define the link. Geology 35 (2007), 339–342.
69. Malkovets, V.G., Griffin, W.L., Pearson, N.J., Rezvukhin, D.I., O'Reilly, S.Y., Pokhilenko, N.P., Garanin, V.K., Spetsius, Z.V., Litasov, K.D., Late metasomatic addition of garnet to the SCLM: Os-isotope evidence. Extended Abstracts of the 10th International Kimberlite Conference, Bangalore, India, Long Abstract 10IKC-173, 2012.
70. Malkovets, V.G., Rezvukhin, D.I., Belousova, E.A., Griffin, W.L., Sharygin, I.S., Tretiakova, I.G., Gibsher, A.A., O'Reilly, S.Y., Kuzmin, D.V., Litasov, K.D., Logvinova, A.M., Pokhilenko, N.P., Sobolev, N.V., Cr-rich rutile: A powerful tool for diamond exploration. Lithos 265 (2016), 304–311.
71. McDonough, W.F., Sun, S.S., The composition of the Earth. Chemical Geology 120 (1995), 223–253.
72. Menezes, F.L.A.D., Chukanov, N.V., Rastsvetaeva, R.K., Aksenov, S.M., Pekov, I.V., Chaves, M.L.S.C., Richards, R.P., Atencio, D., Brandão, P.R.G., Scholz, R., Krambrock, K., Moreira, R.L., Guimaraes, F.S., Romano, A.W., Persiano, A.C., Oliveira, L.C.A., Ardisson, J.D., Almeidaite, Pb (Mn,Y)Zn2(Ti,Fe3+)18O36(O,OH)2, a new crichtonite-group mineral, from Novo Horizonte, Bahia, Brazil. Mineralogical Magazine 79 (2015), 269–283.
73. Mills, S.J., Bindi, L., Cadoni, M., Kampf, A.R., Ciriotti, M.E., Ferraris, G., Paseroite, PbMn2+(Mn2+,Fe2+)2(V5+,Ti,Fe3+,□)18O38, a new member of the crichtonite group. European Journal of Mineralogy 24 (2012), 1061–1067.
74. Nelson, D., Chivas, A., Chappell, B., McCulloch, M., Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta 52 (1988), 1–17.
75. Nikolenko, E.I., Lobov, K.V., Sharygin, I.S., Rezvukhin, D.I., Sulfide-bearing assemblages in mantle-derived garnets from Chompolo lamprophyres (Central Aldan). Proceedings of ХХХIV International Conference “Magmatism of the Earth and Related Strategic Metal Deposits” Miass, Russia, 2017, 165–168.
76. Nikolenko, E.I., Sharygin, I.S., Alifirova, T.A., Korsakov, A.V., Zelenovskiy, P.S., Shur, V.Y., Graphite-bearing mineral assemblages in the mantle beneath Central Aldan superterrane of North Asian craton: combined confocal micro-Raman and electron microprobe characterization. Journal of Raman Spectroscopy 48 (2017), 1597–1605.
77. Norman, M.D., Pearson, N.J., Sharma, A., Griffin, W.L., Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter 20 (1996), 247–261.
78. Norman, M.D., Griffin, W.L., Pearson, N.J., Garcia, M.O., O'Reilly, S.Y., Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry 13 (1998), 477–482.
79. Orlandi, P., Pasero, M., Duchi, G., Olmi, F., Dessauite, (Sr,Pb)(Y,U)(Ti,Fe3+)20O38, a new mineral of the crichtonite group from Buca della Vena mine, Tuscany, Italy. American Mineralogist 82 (1997), 807–811.
80. Orlandi, P., Pasero, M., Rotiroti, N., Filippo, O., Demartin, F., Moëlo, Y., Gramaccioliite-(Y), a new mineral of the crichtonite group from Stura Valley, Piedmont, Italy. European Journal of Mineralogy 16 (2004), 171–175.
81. Pearson, D.G., Shirey, S.B., Carlson, R.W., Boyd, F.R., Pokhilenko, N.P., Shimizu, N., Re-Os, Sm-Nd and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberia craton modified by multi-stage metasomatism. Geochimica et Cosmochimica Acta 59 (1995), 959–977.
82. Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Kuzmin, D.V., Gibsher, A.A., Litasov, K.D., Pokhilenko, N.P., Sobolev, N.V., Inclusions of crichtonite group minerals in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia. Doklady Earth Sciences 466 (2016), 206–209.
83. Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Kuzmin, D.V., Litasov, K.D., Gibsher, A.A., Pokhilenko, N.P., Sobolev, N.V., Inclusions of Cr-and Cr–Nb-Rutile in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia. Doklady Earth Sciences 466 (2016), 173–176.
84. Rezvukhin, D.I., Nikolenko, E.I., Sharygin, I.S., Malkovets, V.G., Oxide mineral inclusions in Cr-pyropes from the Aldanskaya lamprophyre dyke, Yakutia. Proceedings of ХХХIV International Conference “Magmatism of the Earth and Related Strategic Metal Deposits” Miass, Russia, 2017, 205–208.
85. Rosen, O.M., Condie, K.C., Natapov, L.M., Nozhkin, A.D., Archean and Early Proterozoic evolution of the Siberian craton: a preliminary assessment. Condie, K.C., (eds.) Archean Crustal Evolution, 1994, Elsevier, Amsterdam, 411–459.
86. Rudnick, R.L., McDonough, W.F., Chappell, B.W., Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth and Planetary Science Letters 114 (1993), 463–475.
87. Ryan, C.G., Griffin, W.L., Pearson, N.J., Garnet geotherms: pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. Journal of Geophysical Research 101 (1996), 5611–5625.
88. Săbău, G., Alberico, A., A new loveringite occurrence: oriented rods in garnet from the Foltea lherzolite, South Carpathians, Romania. Acta Mineralogica-Petrographica, Abstract Series 1, Szeged, Hungary, 2003, 92.
89. Săbău, G., Alberico, A., What is CCZN-armalcolite? A crystal-chemical discussion and an ad-hoc incursion in the crichtonite-minerals group. Studia Universitatis Babes-Bolyai Geologia 52 (2007), 55–66.
90. Schulze, D.J., Silicate-bearing rutile-dominated nodules from South African kimberlites: metasomatized cumulates. American Mineralogist 75 (1990), 97–104.
91. Shimizu, N., Sobolev, N.V., Yefimova, E.S., Chemical heterogeneities of inclusion garnets and juvenile character of peridotitic diamonds from Siberia. Russian Geology and Geophysics 38 (1997), 356–372.
92. Shu, Q., Brey, G.P., Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth and Planetary Science Letters 418 (2015), 27–39.
93. Skuzovatov, S.Yu., Zedgenizov, D.A., Shatsky, V.S., Ragozin, A.L., Kuper, K.E., Composition of cloudy microinclusions in octahedral diamonds from the Internatsional'naya kimberlite pipe (Yakutia). Russian Geology and Geophysics 52 (2011), 85–96.
94. Skuzovatov, S., Zedgenizov, D., Howell, D., Griffin, W.L., Various growth environments of cloudy diamonds from the Malobotuobia kimberlite field (Siberian craton). Lithos 265 (2016), 96–107.
95. Sobolev, N.V., Lavrent'ev, Y.G., Pokhilenko, N.P., Usova, L.V., Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contributions to Mineralogy and Petrology 40 (1973), 39–52.
96. Sobolev, N.V., Yefimova, E.S., Kaminsky, F.V., Lavrentiev, Y.G., Usova, L.V., Titanate of complex composition and phlogopite in the diamond stability field. Sobolev, N.V., (eds.) Composition and Processes of Deep Seated Zones of Continental Lithosphere, 1988, Nauka, Novosibirsk, 185–186.
97. Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., Yefimova, E.S., Win, T.T., Ryan, C.G., Botkunov, A.I., Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 39 (1997), 135–157.
98. Sobolev, N.V., Logvinova, A.M., Efimova, E.S., Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation. Russian Geology and Geophysics 50 (2009), 1234–1248.
99. Sokol, A.G., Kruk, A.N., Chebotarev, D.A., Pal'yanov, Y.N., Sobolev, N.V., The composition of garnet as an indicator of the conditions of peridotite-carbonatite interaction in the subcratonic lithosphere (experimental data). Doklady Earth Sciences 463 (2015), 746–750.
100. Spetsius, Z.V., Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Pearson, N.J., Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth and Planetary Science Letters 199 (2002), 111–126.
101. Stachel, T., Aulbach, S., Brey, G.P., Harris, J.W., Leost, I., Tappert, R., Viljoen, K.S., The trace element composition of silicate inclusions in diamonds: a review. Lithos 77 (2004), 1–19.
102. Sun, J., Liu, C.-Z., Tappe, S., Kostrovitsky, S.I., Wu, F.-Y., Yakovlev, D., Yang, Y.-H., Yang, J.-H., Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth and Planetary Science Letters 404 (2014), 283–295.
103. Sun, J., Tappe, S., Kostrovitsky, S.I., Liu, C.-Z., Skuzovatov, S.Y., Wu, F.-Y., Mantle sources of kimberlites through time: a U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chemical Geology 479 (2018), 228–240.
104. Varlamov, D.A., Garanin, V.K., Kostrovitskiy, S.I., Exotic high-titanium minerals as inclusions in garnets from lower crustal and mantle xenoliths. Transactions of the Russian Academy of Sciences, Earth Science Section 345A, 1996, 352–355.
105. Vrana, S., Mineral inclusions in pyrope from garnet peridotites, Kolín area, central Czech Republic. Journal of Geosciences 53 (2008), 17–30.
106. Wang, L.J., Essene, E.J., Zhang, Y., Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: implications for processes in the upper mantle. Contributions to Mineralogy and Petrology 135 (1999), 164–178.
107. Waters, F.G., Erlank, A.J., Assessment of the vertical extent and distribution of mantle metasomatism below Kimberley, South Africa. Journal of Petrology, 1988, 185–204.
108. Wülser, P.A., Brugger, J., Meisser, N., The crichtonite group of minerals: a review of the classification. Bulletin de liaison de la Société française de Minéralogie et Cristallographie, 16, 2004, 76–77.
109. Wülser, P.A., Meisser, N., Brugger, J., Schenk, K., Ansermet, S., Bonin, M., Bussy, F., Cleusonite, (Pb,Sr)(U4+,U6+)(Fe2+,Zn)2(Ti,Fe2+,Fe3+)18(O,OH)38, a new mineral species of the crichtonite group from the western Swiss Alps. European Journal of Mineralogy 17 (2005), 933–942.
110. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., Griffin, W.L., Kagi, H., Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112S (2009), 638–647.
111. Zhang, J., Ma, J., Li, L., The crystal structures and crystal chemistry of the lindsleyite and mathiasite. Geology Reviews 34 (1988), 132–144 (in Chinese).
112. Zhang, J., Li, L., Ma, J., The lindsleyite-mathiasite series in kimberlite from Shandong province. Acta Mineralogica Sinica 9 (1989), 25–32 (in Chinese).
113. Zhou, J., Yang, G., Zhang, J., Mathiasite in a kimberlite from China. Acta Mineralogica Sinica 9 (1984), 193–200 (in Chinese).
114. Ziberna, L., Nimis, P., Zanetti, A., Marzoli, A., Sobolev, N.V., Metasomatic processes in the central Siberian cratonic mantle: evidence from garnet xenocrysts from the Zagadochnaya kimberlite. Journal of Petrology 54 (2013), 2379–2409.