Инд. авторы: Sukhorukov V.P., Turkina O.M., Tessalina S., Talavera C.
Заглавие: Sapphirine-bearing Fe-rich granulites in the SW Siberian craton (Angara-Kan block): Implications for Paleoproterozoic ultrahigh-temperature metamorphism
Библ. ссылка: Sukhorukov V.P., Turkina O.M., Tessalina S., Talavera C. Sapphirine-bearing Fe-rich granulites in the SW Siberian craton (Angara-Kan block): Implications for Paleoproterozoic ultrahigh-temperature metamorphism // Gondwana Research. - 2018. - Vol.57. - P.26-47. - ISSN 1342-937X. - EISSN 1878-0571.
Идентиф-ры: DOI: 10.1016/j.gr.2017.12.012; РИНЦ: 35502228; SCOPUS: 2-s2.0-85044379445; WoS: 000440265200003;
Реферат: eng: We report here for the first time the occurrence of sapphirine-bearing rocks within the Paleoproterozoic granulite complex of the Angara-Kan block (SW Siberian craton) and provide strong evidence for crustal metamorphism at ultrahigh-temperature (UHT) conditions in this region. The UHT rocks contain sapphirine, high alumina orthopyroxene, orthopyroxene + sillimanite assemblage, mesoperthitic feldspar and pseudomorphoses after osumilite crystals. The peak temperature of metamorphism was estimated using Al2O3 contents in Opx (up to 10 wt%) and the ternary feldspar composition, and falls in a range of 1050–1100 °C. Observed mineral microstructures indicate post-peak cooling of rocks without a considerable decrease in pressure down to a temperature of about 900 °C. Another type of rock related with UHT metamorphism is represented by orthopyroxene-sillimanite gneisses, which recorded a peak temperature of about 950 °C, decreasing down to 900 °C during post-peak stage. The UHT gneisses record microstructural evidence of melt injection and matrix-melt interaction near the peak metamorphic conditions. Sapphirine grains occur in the gneiss with relatively low Mg bulk composition. It is suggested that sapphirine occurs in the Mg-Al-rich domains which have been formed as a result of partial melting and precipitation of Fe-oxides from the melt. High concentrations of Al2O3 in orthopyroxene are the only sign of UHT metamorphism in Fe-rich rock matrix which is not affected by melt. New SHRIMP U-Pb zircon data from two UHT gneisses indicate the presence of two well-defined age peaks at ca. 1.8 and 1.9 Ga from rims and metamorphic grains, and older dates from ca. 1.91 to 3.15 Ga from detrital cores. The prominent feature of the metamorphic zircons is depletion of U with high Th/U ratio up to 6.0. Steep HREE patterns of the metamorphic zircons suggest their growth in the presence of a melt. The metamorphic zircons from the UHT gneiss record a broad range of temperatures between 1000 °C and 810 °C indicating protracted zircon growth from near peak conditions through retrograde stage of PT-path. The growth of the youngest zircons occurred at higher temperature indicating that the UHT metamorphic conditions were reached at 1.78–1.8 Ga. The timespan of the granulite-UHT metamorphic event is near 50 Ma and is limited by intrusions of late leucogranites and charnockites at 1.75–1.73 Ga. Protracted interval of granulite-UHT metamorphism conforms with isobaric cooling P-T path constructed by mineral assemblages. © 2018 International Association for Gondwana Research
Ключевые слова: UHT metamorphism; Supercontinent Columbia; Siberian Craton; Osumilite; Angara-Kan block; SHRIMP; Zircon dating;
Издано: 2018
Физ. хар-ка: с.26-47
Цитирование: 1. Adjerid, Z., Godard, G., Ouzegane, K.H., Kienast, J.-R., Multistage progressive evolution of rare osumilite-bearing assemblages preserved in ultrahigh-temperature granulites from In Ouzzal (Hoggar, Algeria). Journal of Metamorphic Geology 31 (2013), 505–524.
2. Aranovich, L.Y., Berman, R.G., A new orthopyroxene-garnet thermometer based on reversed Al2O3 solubilities in orthopyroxene in the FeO-Al2O3-SiO2 system. American Mineralogist 82 (1997), 345–353.
3. Aranovich, L.Y., Podlesskii, K.K., Geothermometry of high-grade metapelites: simultaneously operating reactions. Daly, J.S., Cliff, R.A., Yardley, B.W.D., (eds.) Evolution of Metamorphic Belts Geological Society Special Publication, London, vol. 43, 1989, 45–62.
4. Audibert, N., Bertrand, P., Hensen, B.J., Kienast, J.R., Ouzegane, K., Cordierite–K-feldspar quartz ortho-pyroxene symplectite from southern Algeria — new evidence for osumilite in high-grade metamorphic rocks. Mineralogical Magazine 57:387 (1993), 354–357.
5. Baba, S., Two stages of sapphirine formation during prograde and retrograde metamorphism in the palaeoproterozoic Lewisian complex in South Harris, NW Scotland. Journal of Petrology 44:2 (2003), 329–354.
6. Bibikova, E.V., Gracheva, T.V., Makarov, V.A., Nozhkin, A.D., Age boundaries in geological evolution of the Early Precambrian of the Yenisey Ridge. Stratigraphy and Geological Correlation 1:1 (1993), 35–40 (in Russian).
7. Bibikova, E.V., Gracheva, T.V., Kozakov, I.K., Plotkina, Yu.V., U–Pb age of the hypersthene granites (kuzeevites), Angara-Kan Inlier (Yenisei Range). Geologiya i Geofizika 42:5 (2001), 864–867 (in Russian).
8. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200 (2003), 155–170.
9. Bose, S., Das, K., Cordierite–K-feldspar–quartz symplectite and its implication on the reworking of isobarically cooled crust: a case study from the Eastern Ghats belt, India. Indian Journal of Geology 78 (2009), 55–78.
10. Bose, S., Fukuoka, M., Sengupta, P., Dasgupta, S., Evolution of high Mg–Al granulites from Sunkarametta, Eastern Ghats, India: evidence for a lower crustal heating–cooling trajectory. Journal of Metamorphic Geology 18:3 (2000), 223–240.
11. Brown, M., A duality of thermal regimes is the distinctive characteristic of plate tectonics since Neoarchean. Geology 34 (2006), 961–964.
12. Brown, M., Metamorphic pattern in orogenic system and the geological record. Geological Society, London, Special Publications 318 (2009), 37–74.
13. Carrington, D.P., Harley, S.L., Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system. Contributions to Mineralogy and Petrology 120 (1995), 270–291.
14. Carson, C.J., Ague, J.J., Coath, C.D., U–Pb geochronology from Tonagh Island, East Antarctica: implications for the timing of ultra-high temperature metamorphism in the Napier Complex. Precambrian Research 116 (2002), 237–263.
15. Claoue-Long, J.C., Compston, W., Roberts, J., Fanning, C.M., Aubry, M.P., Hardenbol, J., Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. Berggren, W.A., Kint, D.V., (eds.) Geochronology, Timescales and Global Stratigraphic Correlation Society for Sedimentary Geology Special Publications, 54, 1995, 3–21.
16. Clark, C., Fitzsimons, I.C.W., Healy, D., Harley, S.L., How does the continental crust get really hot?. Elements 7 (2011), 235–240.
17. Clark, C., Healy, D., Johnson, T.E., Collins, A., Taylor, R.J., Santosh, M., Timms, N.E., Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India. Gondwana Research 28 (2015), 1310–1328.
18. Compston, W., Williams, I.S., Meyer, C.E., U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high-mass resolution ion microprobe. Proceedings of the fourteenth Lunar and Planetary Science Conference, Part 2 Journal of Geophysical Research, 89, 1984, B525–B534.
19. De Laeter, J.R., Kennedy, A.K., A double focussing mass spectrometer for geochronology. International Journal of Mass Spectrometry and Ion Processes 178 (1998), 43–50.
20. Dharmapriya, P.L., Malaviarachchi, S.P.K., Kriegsman, L., Sajeev, K., Galli, A., Ben-Xun, Su, Subasinghe, N.D., Dissanayake, Distinct metamorphic evolution of alternating silica-saturated and silica-deficient microdomains within garnet in ultrahigh-temperature granulites: an example from Sri Lanka. Geoscience Frontiers 8:5 (2017), 1115–1133.
21. Donskaya, T.V., Gladkochub, D.P., Pisarevsky, S.A., Poller, U., Mazukabzov, A.M., Bayanova, T.B., Discovery of Archaean crust within the Akitkan orogenic belt of the Siberian craton: new insight into its architecture and history. Precambrian Research 170 (2009), 61–72.
22. Ellis, D.J., Osumilite–sapphirine–quartz granulites from Enderby Land, Antarctica — P–T conditions of metamorphism, implications for garnet–cordierite equilibria and the evolution of the deep crust. Contributions to Mineralogy and Petrology 74:2 (1980), 201–210.
23. Fedotova, A.A., Bibikova, E.V., Simakin, S.G., Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochemistry International 46:9 (2008), 912–927.
24. Ferry, J.M., Watson, E.B., New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154 (2007), 429–437.
25. Fitzsimons, I.C.W., Harley, S.L., The influence of retrograde cation exchange on granulite P–T estimates and a convergence technique for the recovery of peak metamorphic conditions. Journal of Petrology 35 (1994), 543–576.
26. Frost, B.R., Chacko, T., The granulite uncertainty principle: limitations on thermobarometry in granulites. Journal of Geology 97 (1989), 435–450.
27. Fuhrman, M.L., Lindsley, D.H., Ternary-feldspar modeling and thermometry. American Mineralogist 73 (1988), 201–215.
28. Gerya, T.V., Maresh, W.V., Metapelites of the Kanskiy granulite complex (eastern Siberia): kinked P–T paths and geodynamic model. Journal of Petrology 45:7 (2004), 1393–1412.
29. Gladkochub, D.P., Donskaya, T.V., Reddy, S.M., Poller, U., Bayanova, T.B., Mazukabzov, A.M., Dril, S., Todt, W., Pisarevsky, S.A., Paleoproterozoic to Eoarchaean crustal growth in southern Siberia: a Nd-isotope synthesis. Reddy, S.M., Mazumder, R., Evans, D.A.D., Collins, A.S., (eds.) Paleoproterozoic Supercontinents and Global Evolution Geological Society of London, Special Publication, vol. 323, 2009, 127–143.
30. Gladkochub, D.P., Pisarevsky, S.A., Ernst, R., Donskaya, T.V., Söderlund, U., Mazukabzov, A.M., Hanes, J., Large igneous province of about 1750 Ma in the Siberian Craton. Doklady Earth Sciences 430:2 (2010), 168–171.
31. Gladkochub, D.P., Mazukabzov, A.M., Stanevich, A.M., Donskaya, T.V., Motova, Z.L., Vanin, V.A., Precambrian sedimentation in the Urik–Iya Graben, southern Siberian Craton: main stages and tectonic settings. Geotectonics 48:5 (2014), 359–370.
32. Grew, E.S., Osumilite in the sapphirine quartz terrane of Enderby Land, Antarctica—implications for osumilite petrogenesis in the granulite facies. American Mineralogist 67:7–8 (1982), 762–787.
33. Harley, S.L., Ultrahigh temperature granulite metamorphism (1050 °C, 12 kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, East Antarctica. Journal of Metamorphic Geology 16 (1998), 541–562.
34. Harley, S.L., Extending our understanding of ultrahigh temperature crustal metamorphism. Journal of Mineralogical and Petrological Sciences 99 (2004), 140–158.
35. Harley, S.L., Refining the PT records of UHT crustal metamorphism. Journal of Metamorphic Geology 26 (2008), 125–154.
36. Harley, S.L., A matter of time: the importance of the duration of UHT metamorphism. Journal of Mineralogical and Petrological Sciences 111 (2016), 50–72.
37. Harley, S.L., Green, D.H., Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300 (1982), 697–701.
38. Harley, S.L., Motoyoshi, Y., Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120 degrees C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contributions to Mineralogy and Petrology 138:4 (2000), 293–307.
39. Harley, S.L., Kelly, N.M., Möller, A., Zircon behaviour and the thermal history of mountain chains. Elements 3:1 (2007), 25–30.
40. Hensen, B.J., Harley, S.L., Graphical analysis of P–T–X relations in granulite facies metapelites. Ashworth, J.R., Brown, M., (eds.) High Temperature Metamorphism and Crustal Anatexis The Mineralogical Society Series, 1990, Mineralogical Society of Great Britain [by] Unwin Hyman, London Boston-Sydney-Wellington, United Kingdom, 19–56.
41. Hokada, T., Feldspar thermometry in ultrahigh-temperature metamorphic rocks: evidence of crustal metamorphism attaining ~1100 °C in the Archean Napier Complex, East Antarctica. American Mineralogist 86 (2001), 932–938.
42. Hokada, T., Harley, S.L., Zircon growth in UHT leucosome: constraints from zircongarnet rare earth element (REE) relations in Napier Complex, East Antarctica. Journal of Mineralogical and Petrological Sciences 99 (2004), 180–190.
43. Hoskin, P.W.O., Black, L.P., Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology 18 (2000), 423–439.
44. Hoskin, P.W.O., Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis. Hanchar, J.M., Hoskin, P.W.O., (eds.) Zircon. Review Mineral. Geochem., vol. 53, 2003, Mineralogical Society of America, Washington, D.C, 27–62.
45. Jiao, S., Guo, J., Harley, S.L., Windley, B.F., New constraints from garnetite on the P-T path of the Khondalite Belt: implications for the tectonic evolution of the North China Craton. Journal of Petrology 54 (2013), 1725–1758.
46. Kelly, N.M., Harley, S.L., An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contributions to Mineralogy and Petrology 149 (2005), 57–84.
47. Kelsey, D.E., On ultrahigh-temperature crustal metamorphism. Gondwana Research 13 (2008), 1–29.
48. Kelsey, D.E., Hand, M.P., On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers 6 (2015), 311–356.
49. Kelsey, D.E., White, R.W., Powell, R., Orthopyroxene–sillimanite–quartz assemblages: distribution, petrology, quantitative P–T–X constraints and P–T paths. Journal of Metamorphic Geology 21 (2003), 439–453.
50. Kelsey, D.E., White, R.W., Holland, T.J.B., Powell, R., Calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2-H2O for sapphirine-quartz-bearing mineral assemblages. Journal of Metamorphic Geology 22 (2004), 559–578.
51. Kennedy, A.K., de Laeter, J.R., The performance characteristics of the WA SHRIMP II ion microprobe. Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology. Berkeley, USA. Abstracts Vol., U.S. Geological Survey Circular, vol. 1107, 1994, 166.
52. Korhonen, F.J., Brown, M., Clark, C., Bhattacharya, S., Osumilite-melt interactions in ultrahigh temperature granulites: phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology 31 (2013), 881–907.
53. Korhonen, F.J., Clark, C., Brown, M., Bhattacharya, S., Taylor, R., How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India. Precambrian Research 234 (2013), 322–350.
54. Larionov, A.N., Andreichev, V.A., Gee, D.G., The Vendian alkaline igneous suite of Northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. Gee, D.G., Pease, V.L., (eds.) The Neoproterozoic Ttimanide Orogen of Eastern Baltica Geological Society, London, Memoirs, vol. 30, 2004, 69–74.
55. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., Krylov, A.A., Kozlov, P.S., Khiller, V.V., Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the south Yenisei ridge and tectonic implications. Petrology 24:4 (2016), 392–408.
56. Ludwig, K.R., User's manual for Isoplot/Ex, version 2.10, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1, 1999 (46 pp.).
57. Ludwig, K.R., SQUID 1.00. A user's manual. Berkeley Geochronology Center Special Publication, vol. 2, 2000 (19 pp.).
58. Ludwig, K.R., Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochron, Center Spec. Publ., vol. 4, 2003 (70 pp.).
59. Ludwig, K.R., SQUID II., a user's manual. Berkeley Geochronology Center Special Publication 2, 2455 Ridge Road, Berkeley, CA 94709, USA, 2009, 22.
60. Martignole, J., Martelat, J.-E., Regional-scale Grenvillian-age UHT metamorphism in the Mollendo–Camana block (basement of the Peruvian Andes). Journal of Metamorphic Geology 21 (2003), 99–120.
61. Nozhkin, A.D., Turkina, O.M., Geochemistry of Granulites from Kansk and Sharyzhalgay Complexes. 1993, UIGGM, Novosibirsk (in Russian).
62. Nozhkin, A.D., Bibikova, E.V., Turkina, O.M., Ponomarchuk, V.A., U–Pb, Ar–Ar, and Sm–Nd isotope-geochronological study of porphyritic subalkalic granites of the Taraka pluton (Yenisei Range). Russian Geology and Geophysics 44 (2003), 879–889.
63. Nozhkin, A.D., Turkina, O.M., Maslov, A.V., Dmitrieva, N.V., Kovach, V.P., Ronkin, Yu.L., Sm–Nd isotopic systematics of Precambrian metapelites from the Yenisei Range and age variations of their provenances. Doklady Earth Sciences 423A:9 (2008), 1495–1500.
64. Nozhkin, A.D., Turkina, O.M., Bayanova, T.B., Paleoproterozoic collisional and intraplate granitoids of the southwest margin of the Siberian Craton: petrogeochemical features and U–Pb geochronological and Sm–Nd isotopic data. Doklady Earth Sciences 428:7 (2009), 1192–1197.
65. Nozhkin, A.D., Turkina, O.M., Likhanov, I.I., Dmitrieva, N.V., Late Paleoproterozoic volcanic associations in the southwestern Siberian craton (Angara-Kan block). Russian Geology and Geophysics 57 (2016), 247–264.
66. Orejana, D., Villaseca, C., Richard, A., Armstrong, R.A., Jeffries, T.E., Geochronology and trace element chemistry of zircon and garnet from granulite xenoliths: constraints on the tectonothermal evolution of the lower crust under central Spain. Lithos 124 (2011), 103–116.
67. Patino Douce, A.E., Johnson, A.D., Phase equilibria and melt productivity in the politic system: implication for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology 107 (1991), 202–218.
68. Pattison, D.R.M., Chacko, T., Farquhar, J., McFarlane, C.R.M., Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology 44:5 (2003), 867–900.
69. Perchuk, L.L., Gerya, T.V., Nozhkin, A.D., Petrology and retrogression in granulites of the Kanskiy Formation, Yenisey Range, Eastern Siberia. Journal of Metamorphic Geology 7 (1989), 599–617.
70. Perkins, D.I.I.I., Newton, R.C., Charnockite geobarometers based on coexisting garnet-pyroxene-plagioclase-quartz. Nature 292:9 (1981), 144–146.
71. Rocha, B.C., Moraes, R., Möller, A., Cioffi, C.R., Jercinovic, M.J., Timing of anatexis and melt crystallization in the Socorro–Guaxupé Nappe, SE Brazil: insights from trace element composition of zircon, monazite and garnet coupled to UPb geochronology. Lithos 277 (2016), 337–355.
72. Rogers, J.J.W., Santosh, M., Consuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research 5:1 (2002), 5–22.
73. Rosen, O.M., The Siberian Craton: tectonic zonation and stages of evolution. Geotectonics 37 (2003), 175–192.
74. Rosen, O.M., Turkina, O.M., The oldest rocks assemblages of the Siberian craton. Van Kranendonk, M.J., Smithies, R.H., Bennett, V.C., (eds.) Earth's Oldest Rocks, 2007, Elsevier, Amsterdam, 793–838.
75. Rosen, O.M., Condie, K.C., Natapov, L.M., Nozhkin, A.D., Archaean and Early Proterozoic evolution of the Siberian Craton: a preliminary assessment. Condie, K.C., (eds.) Archaean Crustal Evolution, 1994, Elsevier, Amsterdam, 411–459.
76. Rubatto, D., Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184 (2002), 123–138.
77. Santosh, M., Sajeev, K., Li, J.H., Extreme crustal metamorphism during Columbia supercontinent assembly: evidences from North-China Craton. Gondwana Research 10 (2006), 256–266.
78. Santosh, M., Tsunogae, T., Li, J.H., Liu, S.J., Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: implications for Palaeoproterozoic ultrahigh temperature metamorphism. Gondwana Research 11 (2007), 263–285.
79. Santosh, M., Liu, S.J., Tsunogae, T., Li, J.H., Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: implications for tectonic models on extreme crustal metamorphism. Precambrian Research 222–223 (2012), 77–106.
80. Schaltegger, U., Fanning, C.M., Gunther, D., Maurin, J.C., Schulmann, K., Gebauer, D., Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology 134 (1999), 186–201.
81. Sizova, E., Gerya, T., Brown, M., Contrasting style of Phanerozoic and Precambrian continental collision. Gondwana Research 25 (2014), 522–545.
82. Smelov, A.P., Timofeev, V.F., The age of the North Asian Cratonic basement: an overview. Gondwana Research 2007:12 (2007), 279–288.
83. Smit, J.V., Feldspar Minerals. V.1. Crystal Structure and Physical Properties. 1974, Springer-Verlag, Berlin (625 p.).
84. Smith, C.A., Van Reenen, D.D., Gerya, T.V., Varlamov, D.A., Fed'kin, A.V., Structural-metamorphic evolution of the Southern Yenisey Range of Eastern Siberia: implications for the emplacement of the Kanskiy granulite Complex. Mineralogy and Petrology 69 (2000), 35–67.
85. Sobolev, A.V., Migdisov, A.A., Portnyagin, M.V., Distribution of admixture elements among clinopyroxene and basaltic melt: results of study of melt inclusions in minerals from the Troodos massif, Cyprus. Petrology 4:3 (1996), 326–336.
86. Spear, F.S., Florence, F.P., Thermobarometry in granulites: pitfalls and new approaches. Precambrian Research 55 (1992), 209–241.
87. Stern, R.S., A New Isotopic and Trace-element Standard for the Ion Microprobe: Preliminary Thermal Ionization Mass Spectrometry (TIMS) U-Pb and Electron-microprobe Data. Current Research, 2001, Geological Survey of Canada (2001-F1).
88. Stern, R.S., Bodorkos, S., Kamo, S.L., Hickman, A.H., Corfu, F., Measurement of SIMS instrumental mass fractionation of Pb-isotopes during zircon dating. Geostandards and Geoanalytical Research 33 (2009), 145–168.
89. Štípská, P., Powell, R., Does ternary feldspar constrain the metamorphic conditions of high-grade meta-igneous rocks? Evidence from orthopyroxene granulites, Bohemian Massif. Journal of Metamorphic Geology 23 (2005), 627–647.
90. Sukhorukov, V.P., Turkina, O.M., Hyperstene-sillimanite assemblages in gneisses of Angara-Kan granulite block: occurrence of UHT metamorphism on Yenisey ridge. Precambrian High-grade Mobile Belts, 2014, KRC RAS, Petrozavodsk, 108.
91. Sukhorukov, V.P., Turkina, O.M., Estimation of the P-T parameters for the latest stage of Paleoproterozoic metamorphism in the Angara-Kan block of the Yenisei Ridge. Doklady Earth Sciences 459:1 (2014), 1375–1380.
92. Tsunogae, T., Santosh, M., Ultrahigh-temperature metamorphism and decompression history of sapphirine granulites from Rajapalaiyam, Southern India: implication for the formation of hot orogens during Gondwana assembly. Geological Magazine 147 (2010), 42–58.
93. Tsunogae, T., Liu, S.J., Santosh, M., Shimizu, H., Li, J.H., Ultrahigh-temperature metamorphism in Daqingshan, Inner Mongolia Suture Zone, North China Craton. Gondwana Research 20 (2011), 36–47.
94. Turkina, O.M., Sukhorukov, V.P., Stages and conditions of metamorphism of mafic granulites in the Early Precambrian complex of the Angara–Kan terrane (southwestern Siberian Craton). Russian Geology and Geophysics 56 (2015), 1544–1567.
95. Turkina, O.M., Nozhkin, A.D., Bayanova, T.B., Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian craton. Petrology 14:3 (2006), 262–283.
96. Turkina, O.M., Berezhnaya, N.G., Lepekhina, E.N., Kapitonov, I.N., U-Pb (SHRIMP II), Lu-Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut terrane, Sharyzhalgay Uplift: implications for the Neoarchaean evolution of the Siberian Craton. Gondwana Research 21 (2012), 801–817.
97. Urmantseva, L.N., Turkina, O.M., Larionov, A.N., Metasedimentary rocks of the Angara-Kan granulite-gneiss block (Yenisey Ridge, south-western margin of the Siberian Craton): provenance characteristic, deposition and age. Journal of Asian Earth Sciences 49 (2012), 7–19.
98. Vielzeuf, D., Holloway, John R., Experimental determination of the fluid-absent melting relations in the pelitic system. Contributions to Mineralogy and Petrology 98:3 (1988), 257–276.
99. Vielzeuf, D., Montel, J.-M., Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology 117:4 (1994), 375–393.
100. Waters, D.J., Hercynite–quartz granulites: phase relations, and implications for crustal processes. European Journal of Mineralogy 3:2 (1991), 367–386.
101. Wells, P.R.A., P-T conditions in the Moines of the Central Highlands, Scotland. Journal of the Geological Society of London 136 (1979), 663–671.
102. Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals. American Mineralogist 95 (2010), 185–187.
103. Williams, I.S., U–Th–Pb geochronology by ion-microprobe. McKibben, M.A., ShanksIII, W.C., Ridley, W.I., (eds.) Reviews in Economic Geology, vol. 7, 1998, 1–35.
104. Wood, B.J., The influence of pressure, temperature and bulk composition on the appearance of garnet in orthogneisses -an example from South Harris, Scotland. Earth and Planetary Science Letters 26:3 (1975), 299–311.
105. Yang, Q.-Y., Santosh, M., Tsunogae, T., Ultrahigh-temperature metamorphism under isobaric heating: new evidence from the North China Craton. Journal of Asian Earth Sciences 95 (2014), 2–16.
106. Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., A review of the global 2.1–1.8 Ga orogens: implications for a pre-Rodinian supercontinent. Earth-Science Reviews 59 (2002), 125–162.