Инд. авторы: Chanyshev A.D., Litasov K.D., Rashchenko S.V., Sano-Furukawa A., Kagi H., Hattori T., Shatskiy A.F., Dymshits A.M., Sharygin I.S., Higo Y.
Заглавие: High-Pressure-High-Temperature Study of Benzene: Refined Crystal Structure and New Phase Diagram up to 8 GPa and 923 K
Библ. ссылка: Chanyshev A.D., Litasov K.D., Rashchenko S.V., Sano-Furukawa A., Kagi H., Hattori T., Shatskiy A.F., Dymshits A.M., Sharygin I.S., Higo Y. High-Pressure-High-Temperature Study of Benzene: Refined Crystal Structure and New Phase Diagram up to 8 GPa and 923 K // Crystal Growth & Design. - 2018. - Vol.18. - Iss. 5. - P.3016-3026. - ISSN 1528-7483. - EISSN 1528-7505.
Идентиф-ры: DOI: 10.1021/acs.cgd.8b00125; РИНЦ: 35529897; SCOPUS: 2-s2.0-85046376301; WoS: 000431599100042;
Реферат: eng: The high-temperature structural properties of solid benzene were studied at 1.5-8.2 GPa up to melting or decomposition using multianvil apparatus and in situ neutron and X-ray diffraction. The crystal structure of deuterated benzene phase II (P21/c unit cell) was refined at 3.6-8.2 GPa and 473-873 K. Our data show a minor temperature effect on the change in the unit cell parameters of deuterated benzene at 7.8-8.2 GPa. At 3.6-4.0 GPa, we observed the deviation of deuterium atoms from the benzene ring plane and minor zigzag deformation of the benzene ring, enhancing with the temperature increase caused by the displacement of benzene molecules and decrease of van der Waals bond length between the π-conjuncted carbon skeleton and the deuterium atom of adjacent molecule. Deformation of benzene molecule at 723-773 K and 3.9-4.0 GPa could be related to the benzene oligomerization at the same conditions. In the pressure range of 1.5-8.2 GPa, benzene decomposition was defined between 773-923 K. Melting was identified at 2.2 GPa and 573 K. Quenched products analyzed by Raman spectroscopy consist of carbonaceous material. The defined benzene phase diagram appears to be consistent with those of naphthalene, pyrene, and coronene at 1.5-8 GPa. © 2018 American Chemical Society.
Ключевые слова: Van der Waals bonds; Unit cell parameters; Temperature increase; Multi-anvil apparatus; High pressure high temperature; Carbonaceous materials; Benzene molecules; Benzene decomposition; X ray diffraction; Phase diagrams; Naphthalene; Molecules; Melting; Deuterium; Deformation; Crystal structure; Bond length; Van der Waals forces; Benzene;
Издано: 2018
Физ. хар-ка: с.3016-3026
Цитирование: 1. d'Hendecourt, L.; Ehrenfreund, P. Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications. Adv. Space Res. 1997, 19, 1023-1032, 10.1016/S0273-1177(97)00349-9
2. Ehrenfreund, P.; Charnley, S. B. Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Annu. Rev. Astron. Astrophys. 2000, 38, 427-483, 10.1146/annurev.astro.38.1.427
3. Puget, J.; Leger, A. A new component of the interstellar matter: Small grains and large aromatic molecules. Annu. Rev. Astron. Astrophys. 1989, 27, 161-198, 10.1146/annurev.aa.27.090189.001113
4. Tielens, A. G. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 2008, 46, 289-337, 10.1146/annurev.astro.46.060407.145211
5. Joblin, C.; Tielens, A. G. G. M. PAHs and the Universe: A Symposium to Celebrate the 25th Anniversary of the PAH Hypothesis; EAS Publications Series, 2011.
6. Becker, L.; Glavin, D. P.; Bada, J. L. Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice. Geochim. Cosmochim. Acta 1997, 61, 475-481, 10.1016/S0016-7037(96)00400-0
7. Krishnamurthy, R.; Epstein, S.; Cronin, J. R.; Pizzarello, S.; Yuen, G. U. Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 1992, 56, 4045-4058, 10.1016/0016-7037(92)90015-B
8. Oro, J.; Gibert, J.; Lichtenstein, H.; Wikstrom, S.; Flory, D. Amino-acids, aliphatic and aromatic hydrocarbons in the Murchison meteorite. Nature 1971, 230, 105-106, 10.1038/230105a0
9. Anders, E. Pre-biotic organic matter from comets and asteroids. Nature 1989, 342, 255-257, 10.1038/342255a0
10. Chyba, C.; Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 1992, 355, 125, 10.1038/355125a0
11. Chyba, C. F.; Thomas, P. J.; Brookshaw, L.; Sagan, C. Cometary delivery of organic molecules to the early Earth. Science 1990, 249, 366-373, 10.1126/science.11538074
12. Brooks, B. T. The Chemistry of Petroleum Hydrocarbons; Reinhold, 1955.
13. Kinney, C.; DelBel, E. Pyrolytic behavior of unsubstituted aromatic hydrocarbons. Ind. Eng. Chem. 1954, 46, 548-556, 10.1021/ie50531a042
14. Hurd, C. D. The Pyrolysis of Carbon Compounds; Chemical Catalog Company, Inc.: New York, 1929.
15. Bridgman, P. W. Change of phase under pressure. I. The phase diagram of eleven substances with especial reference to the melting curve. Phys. Rev. 1914, 3, 153, 10.1103/PhysRev.3.153
16. Chen, B.; Hoffmann, R.; Ashcroft, N.; Badding, J.; Xu, E.; Crespi, V. Linearly polymerized benzene arrays as intermediates, tracing pathways to carbon nanothreads. J. Am. Chem. Soc. 2015, 137, 14373-14386, 10.1021/jacs.5b09053
17. Fitzgibbons, T. C.; Guthrie, M.; Xu, E.-s.; Crespi, V. H.; Davidowski, S. K.; Cody, G. D.; Alem, N.; Badding, J. V. Benzene-derived carbon nanothreads. Nat. Mater. 2015, 14, 43-47, 10.1038/nmat4088
18. Wen, X.-D.; Hoffmann, R.; Ashcroft, N. Benzene under high pressure: a story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase. J. Am. Chem. Soc. 2011, 133, 9023-9035, 10.1021/ja201786y
19. Cansell, F.; Fabre, D.; Petitet, J. P. Phase transitions and chemical transformations of benzene up to 550 °C and 30 GPa. J. Chem. Phys. 1993, 99, 7300, 10.1063/1.465711
20. Ciabini, L.; Gorelli, F. A.; Santoro, M.; Bini, R.; Schettino, V.; Mezouar, M. High-pressure and high-temperature equation of state and phase diagram of solid benzene. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 094108, 10.1103/PhysRevB.72.094108
21. Oliver, G. D.; Eaton, M.; Huffman, H. M. The heat capacity, heat of fusion and entropy of benzene1. J. Am. Chem. Soc. 1948, 70, 1502, 10.1021/ja01184a062
22. Craven, C.; Hatton, P.; Howard, C.; Pawley, G. The structure and dynamics of solid benzene. I. A neutron powder diffraction study of deuterated benzene from 4 K to the melting point. J. Chem. Phys. 1993, 98, 8236-8243, 10.1063/1.464528
23. Cox, E.; Cruickshank, D.; Smith, J. The crystal structure of benzene at -3°C. Proc. R. Soc. London, Ser. A 1958, 247, 1-21, 10.1098/rspa.1958.0167
24. Bacon, G.; Curry, N. T.; Wilson, S. A crystallographic study of solid benzene by neutron diffraction. Proc. R. Soc. London, Ser. A 1964, 279, 98-110, 10.1098/rspa.1964.0092
25. Thiery, M.; Besson, J.; Bribes, J. High pressure solid phases of benzene. II. Calculations of the vibration frequencies and evolution of the bonds in C6H6 and C6D6 up to 20 GPa. J. Chem. Phys. 1992, 96, 2633-2654, 10.1063/1.462014
26. Piermarini, G.; Mighell, A.; Weir, C.; Block, S. Crystal structure of benzene II at 25 kilobars. Science 1969, 165, 1250-1255, 10.1126/science.165.3899.1250
27. Budzianowski, A.; Katrusiak, A. Pressure-frozen benzene I revisited. Acta Crystallogr., Sect. B: Struct. Sci. 2006, 62, 94-101, 10.1107/S010876810503747X
28. Katrusiak, A.; Podsiadło, M.; Budzianowski, A. Association CH··· π and no van der Waals contacts at the lowest limits of crystalline benzene I and II stability regions. Cryst. Growth Des. 2010, 10, 3461-3465, 10.1021/cg1002594
29. Akella, J.; Kennedy, G. C. Phase diagram of benzene to 35 kbar. J. Chem. Phys. 1971, 55, 793-796, 10.1063/1.1676145
30. Ciabini, L.; Santoro, M.; Bini, R.; Schettino, V. High pressure reactivity of solid benzene probed by infrared spectroscopy. J. Chem. Phys. 2002, 116, 2928-2935, 10.1063/1.1435570
31. Kondrin, M.; Nikolaev, N. A.; Boldyrev, K. N.; Shulga, Y. M.; Zibrov, I. P.; Brazhkin, V. V. Bulk graphanes synthesized from benzene and pyridine. CrystEngComm 2017, 19, 958-966, 10.1039/C6CE02327D
32. Jeffrey, G.; Ruble, J.; McMullan, R. The crystal structure of deuterated benzene. Proc. R. Soc. London, Ser. A 1987, 414, 47-57, 10.1098/rspa.1987.0132
33. Kozhin, V. Kristallicheskaya structura benzola. Zh. Fiz. Khim. 1954, 28, 566-566
34. Shinozaki, A.; Mimura, K.; Kagi, H.; Komatu, K.; Noguchi, N.; Gotou, H. Pressure-induced oligomerization of benzene at room temperature as a precursory reaction of amorphization. J. Chem. Phys. 2014, 141, 084306, 10.1063/1.4893870
35. Ciabini, L.; Santoro, M.; Gorelli, F. A.; Bini, R.; Schettino, V.; Raugei, S. Triggering dynamics of the high-pressure benzene amorphization. Nat. Mater. 2007, 6, 39-43, 10.1038/nmat1803
36. Shinozaki, A.; Mimura, K.; Nishida, T.; Inoue, T.; Nakano, S.; Kagi, H. Stability and partial oligomerization of naphthalene under high pressure at room temperature. Chem. Phys. Lett. 2016, 662, 263-267, 10.1016/j.cplett.2016.09.042
37. Chanyshev, A. D.; Litasov, K. D.; Shatskiy, A. F.; Furukawa, Y.; Yoshino, T.; Ohtani, E. Oligomerization and carbonization of polycyclic aromatic hydrocarbons at high pressure and temperature. Carbon 2015, 84, 225-235, 10.1016/j.carbon.2014.12.011
38. Chanyshev, A. D.; Litasov, K. D.; Furukawa, Y.; Kokh, K. A.; Shatskiy, A. F. Temperature-induced oligomerization of polycyclic aromatic hydrocarbons at ambient and high pressures. Sci. Rep. 2017, 7, 1-8, 10.1038/s41598-017-08529-2
39. Likhacheva, A. Y.; Chanyshev, A. D.; Goryainov, S. V.; Rashchenko, S. V.; Litasov, K. D. High-pressure-high temperature (HP-HT) stability of polytetrafluoroethylene: Raman spectroscopic study up to 10 GPa and 600°C. Appl. Spectrosc. 2017, 71, 1842-1848, 10.1177/0003702817691529
40. Litasov, K. D.; Ohtani, E. Phase relations in the peridotite-carbonate-chloride system at 7.0-16.5 GPa and the role of chlorides in the origin of kimberlite and diamond. Chem. Geol. 2009, 262, 29-41, 10.1016/j.chemgeo.2008.12.027
41. Decker, D.; Bassett, W.; Merrill, L.; Hall, H.; Barnett, J. High-pressure calibration: A critical review. J. Phys. Chem. Ref. Data 1972, 1, 773-836, 10.1063/1.3253105
42. Bohlen, S. R.; Boettcher, A. The quartz⇆coesite transformation: a precise determination and the effects of other components. J. Geophys. Res.: Solid Earth 1982, 87, 7073-7078, 10.1029/JB087iB08p07073
43. Ono, S.; Kikegawa, T.; Higo, Y. In situ observation of a garnet/perovskite transition in CaGeO3. Phys. Chem. Miner. 2011, 38, 735-740, 10.1007/s00269-011-0446-z
44. Shatskiy, A.; Katsura, T.; Litasov, K.; Shcherbakova, A.; Borzdov, Y.; Yamazaki, D.; Yoneda, A.; Ohtani, E.; Ito, E. High pressure generation using scaled-up Kawai-cell. Phys. Earth Planet. Inter. 2011, 189, 92-108, 10.1016/j.pepi.2011.08.001
45. Wang, Y.; Zhang, J.; Xu, H.; Lin, Z.; Daemen, L. L.; Zhao, Y.; Wang, L. Thermal equation of state of copper studied by high P-T synchrotron x-ray diffraction. Appl. Phys. Lett. 2009, 94, 071904, 10.1063/1.3085997
46. Kaneko, H.; Funakoshi, K.-I.; Katsura, T.; Utsumi, W. Computer control and measurement systems for 'SPEED-1500', a Kawai-type multi-anvil press for in situ X-ray observations with synchrotron radiation. Koatsuryoku no Kagaku to Gijutsu 2005, 15, 9, 10.4131/jshpreview.15.9
47. Sano-Furukawa, A.; Hattori, T.; Arima, H.; Yamada, A.; Tabata, S.; Kondo, M.; Nakamura, A.; Kagi, H.; Yagi, T. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments. Rev. Sci. Instrum. 2014, 85, 113905, 10.1063/1.4901095
48. Hattori, T.; Sano-Furukawa, A.; Arima, H.; Komatsu, K.; Yamada, A.; Inamura, Y.; Nakatani, T.; Seto, Y.; Nagai, T.; Utsumi, W. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl. Instrum. Methods Phys. Res., Sect. A 2015, 780, 55-67, 10.1016/j.nima.2015.01.059
49. Sokolova, T.; Dorogokupets, P.; Litasov, K. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2-NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Geol. Geophys. 2013, 54, 181-199, 10.1016/j.rgg.2013.01.005
50. Toby, B. H.; Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544-549, 10.1107/S0021889813003531
51. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466-470, 10.1107/S0021889807067908
52. Gan, H.; Horner, M. G.; Hrnjez, B. J.; McCormack, T. A.; King, J. L.; Gasyna, Z.; Chen, G.; Gleiter, R.; Yang, N.-c. C. Chemistry of syn-o, o ′-Dibenzene. J. Am. Chem. Soc. 2000, 122, 12098-12111, 10.1021/ja0023579
53. Rogachev, A. Y.; Wen, X.-D.; Hoffmann, R. Jailbreaking benzene dimers. J. Am. Chem. Soc. 2012, 134, 8062-8065, 10.1021/ja302597r
54. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CRYSTALEXPLORER17; University of Western Australia: Crawley, Australia, 2017.
55. Spackman, M. A.; Byrom, P. G. A novel definition of a molecule in a crystal. Chem. Phys. Lett. 1997, 267, 215-220, 10.1016/S0009-2614(97)00100-0
56. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr., Sect. B: Struct. Sci. 2004, 60, 627-668, 10.1107/S0108768104020300
57. Likhacheva, A. Y.; Rashchenko, S. V.; Chanyshev, A. D.; Inerbaev, T. M.; Litasov, K. D.; Kilin, D. S. Thermal equation of state of solid naphthalene to 13 GPa and 773 K: in situ X-ray diffraction study and first principles calculations. J. Chem. Phys. 2014, 140, 164508, 10.1063/1.4871741
58. Meletov, K. Phonon spectrum of a naphthalene crystal at a high pressure: Influence of shortened distances on the lattice and intramolecular vibrations. Phys. Solid State 2013, 55, 581-588, 10.1134/S1063783413030207
59. Oehzelt, M.; Heimel, G.; Resel, R.; Puschnig, P.; Hummer, K.; Ambrosch-Draxl, C.; Takemura, K.; Nakayama, A. High pressure x-ray study on anthracene. J. Chem. Phys. 2003, 119, 1078-1084, 10.1063/1.1578994
60. Chanyshev, A. D.; Litasov, K. D.; Shatskiy, A. F.; Ohtani, E. In situ X-ray diffraction study of polycyclic aromatic hydrocarbons at pressures of 7-15 GPa: Implication to deep-seated fluids in the Earth and planetary environments. Chem. Geol. 2015, 405, 39-47, 10.1016/j.chemgeo.2015.04.004
61. Figuiere, P.; Fuchs, A.; Ghelfenstein, M.; Szwarc, H. Pressure-volume-temperature relations for crystalline benzene. J. Phys. Chem. Solids 1978, 39, 19-24, 10.1016/0022-3697(78)90193-2
62. Fuchs, A.; Pruzan, P.; Ter Minassian, L. Thermal expansion of benzene at high pressure determined by a calorimetric method, its behavior near melting. J. Phys. Chem. Solids 1979, 40, 369-374, 10.1016/0022-3697(79)90006-4
63. Nicol, M.; Vernon, M.; Woo, J. T. Raman spectra and defect fluorescence of anthracene and naphthalene crystals at high pressures and low temperatures. J. Chem. Phys. 1975, 63, 1992-1999, 10.1063/1.431535
64. Ferrari, A.; Robertson Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 14095, 10.1103/PhysRevB.61.14095
65. Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126-1130, 10.1063/1.1674108
66. Vidano, R.; Fischbach, D.; Willis, L.; Loehr, T. Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981, 39, 341-344, 10.1016/0038-1098(81)90686-4
67. Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 2005, 43, 1731-1742, 10.1016/j.carbon.2005.02.018
68. Sokol, A. G.; Pal'yanov, Y. N.; Pal'yanova, G. A.; Tomilenko, A. A. Diamond crystallization in fluid and carbonate-fluid systems under mantle P-T conditions: 1. Fluid composition. Geochem. Int. 2004, 42, 830-838
69. Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; Bulychev, B. M.; Fedotov, V. K.; Fursova, T. N.; Kolesnikov, A. I.; Kulakov, V. I.; Lukashev, R. V.; Matveev, D. V.; Sakharov, M. K.; Shulga, Y. M. Multilayer graphane synthesized under high hydrogen pressure. Carbon 2016, 100, 465-473, 10.1016/j.carbon.2015.12.051
70. Chanyshev, A. D.; Litasov, K. D.; Shatskiy, A. F.; Sharygin, I. S.; Higo, Y.; Ohtani, E. Transition from melting to carbonization of naphthalene, anthracene, pyrene and coronene at high pressure. Phys. Earth Planet. Inter. 2017, 270, 29-39, 10.1016/j.pepi.2017.06.011
71. Marsh, H.; Dachille, F.; Melvin, J.; Walker, P. The carbonisation of anthracene and biphenyl under pressures of 300 MNm (3 kbar). Carbon 1971, 9, 159-177, 10.1016/0008-6223(71)90128-X
72. Marsh, H.; Foster, J. M.; Hermon, G.; Iley, M. Carbonization and liquid-crystal (mesophase) development. Part 2. Co-carbonization of aromatic and organic dye compounds, and influence of inerts. Fuel 1973, 52, 234-242, 10.1016/0016-2361(73)90051-3
73. Marsh, H.; Foster, J. M.; Hermon, G.; Iley, M.; Melvin, J. N. Carbonization and liquid-crystal (mesophase) development. Part 3. Co-carbonization of aromatic and heterocyclic compounds containing oxygen, nitrogen and sulphur. Fuel 1973, 52, 243-252, 10.1016/0016-2361(73)90052-5
74. Whang, P.; Dachille, F.; Walker, P., Jr. Pressure effects on the initial carbonization reactions of anthracene. High Temp.-High Pressures 1974, 6, 127-36
75. Poling, B. E.; Prausnitz, J. M.; O'Connell, J. P. The Properties of Gases and Liquids, 5 th ed.; McGraw-Hill: New York, 2000.