Инд. авторы: Lavrentyev A.A., Gabrelian B.V., Vu T.V., Isaenko L.I., Yelisseyev A.P., Khyzhun O.Y.
Заглавие: Electronic structure and optical properties of LiGa0.5In0.5Se2 single crystal, a nonlinear optical mid-IR material
Библ. ссылка: Lavrentyev A.A., Gabrelian B.V., Vu T.V., Isaenko L.I., Yelisseyev A.P., Khyzhun O.Y. Electronic structure and optical properties of LiGa0.5In0.5Se2 single crystal, a nonlinear optical mid-IR material // Optical Materials. - 2018. - Vol.80. - P.12-21. - ISSN 0925-3467. - EISSN 1873-1252.
Идентиф-ры: DOI: 10.1016/j.optmat.2018.04.025; РИНЦ: 35544940; SCOPUS: 2-s2.0-85046016371; WoS: 000435053600003;
Реферат: eng: Measurements of X-ray photoelectron core-level and valence-band spectra for pristine and irradiated with Ar+ ions surfaces of LiGa0.5In0.5Se2 single crystal, novel nonlinear optical mid-IR selenide grown by a modified vertical Bridgman-Stockbarger technique, are reported. Electronic structure of LiGa0.5In0.5Se2 is elucidated from theoretical and experimental points of view. Notably, total and partial densities of states (DOSs) of the LiGa0.5In0.5Se2 compound are calculated based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method. In accordance with the DFT calculations, the principal contributors to the valence band are the Se 4p states, making the main input at the top and in the upper part of the band, while its bottom is dominated by contributions of the valence s states associated with Ga and In atoms. The theoretical total DOS curve peculiarities are found to be in excellent agreement with the shape of the X-ray photoelectron valence-band spectrum of the LiGa0.5In0.5Se2 single crystal. The bottom of the conduction band of LiGa0.5In0.5Se2 is formed mainly by contributions of the unoccupied Ga 4s and In 5s states in almost equal proportion, with somewhat smaller contributions of the unoccupied Se 4p states as well. Our calculations indicate that the LiGa0.5In0.5Se2 compound is a direct gap semiconductor. The principal optical constants of LiGa0.5In0.5Se2 are calculated in the present work. © 2018 Elsevier B.V.
Ключевые слова: X-ray photoelectrons; Valence band spectra; Non-linear optical; Modified vertical bridgman; Electronic structure and optical properties; Direct-gap semiconductor; Band structure calculation; Augmented plane waves; X ray photoelectron spectroscopy; Valence bands; Single crystals; Single crystal surfaces; Semiconductor materials; Semiconducting indium compounds; Selenium compounds; Photons; Photoelectrons; Optical properties; Nonlinear optics; Lithium compounds; Gallium; Electronic structure; Density functional theory; Crystal structure; Core levels; X-ray photoelectron spectroscopy; Semiconductors; Optical properties; Electronic structure; Band-structure calculations; Selenium; Semiconducting selenium compounds;
Издано: 2018
Физ. хар-ка: с.12-21
Цитирование: 1. Levine, B.F., Phys. Rev. B 7 (1973), 2600–2626.
2. Shay, J.L., Tell, B., Kasper, H.M., Schiavone, L.M., Phys. Rev. B 7 (1973), 4485–4490.
3. Shay, J.L., Wernik, J.H., Ternary chalcopyrite semiconductors: growth, electronic properties, and applications, vol. 7, 1975 International series of monographs in the science of the solid state, Pergamon, Oxford.
4. Kim, J.Y., Hughbanks, T., Inorg. Chem. 39 (2000), 3092–3097.
5. Magesh, M., Arunkumar, A., Vijayakumar, P., Anands Babu, G., Ramasamy, P., Optic Laser. Technol. 56 (2014), 177–181.
6. Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Ananchenko, L.N., Isaenko, L.I., Yelisseyev, A., Krinitsin, P.G., Khyzhun, O.Y., Physica B 501 (2016), 74–83.
7. Hoppe, R., Bull. Soc. Chim. Fr., 1965, 1115.
8. Boyd, G.D., Gandrud, W.B., Buehler, E., Appl. Phys. Lett. 18 (1971), 446–448.
9. Wagner, S., Shay, J.L., Tell, B., Kasper, H.M., Appl. Phys. Lett. 22 (1973), 351–353.
10. Isaenko, L., Yelisseyev, A., Lobanov, S., Krinitsin, P., Petrov, V., Zondy, J.-J., J. Non-Cryst. Solids 352 (2006), 2439–2443.
11. Mei, D., Yin, W., Feng, K., Lin, Z., Bai, L., Yao, J., Wu, Y., Inorg. Chem. 51 (2012), 1035–1040.
12. Yavetskiy, R.P., Kosyanov, D.Yu, Doroshenko, A.G., Parkhomenko, S.V., Mateychenko, P.V., Vorona, I.O., Tolmachev, A.V., Lopin, A.V., Baumer, V.N., Voznyy, V.L., Ceram. Int. 41 (2015), 11966–11974.
13. Nedilko, S.G., Rybak, YaO., Voznyy, V.L., Taranenko, V.B., Kopylov, YuL., Kravchenko, B.V., Kosyanov, D.Yu, Yavetskiy, R.P., Tolmachev, A.V., Physics Procedia 76 (2015), 138–144.
14. Kosyanov, D.Yu, Yavetskiy, R.P., Baumer, V.N., Kopylov, YuL., Kravchenko, V.B., Vorona, I.O., Cherednichenko, A.I., Vorona, V.I., Tolmachev, A.V., J. Alloy. Comp. 686 (2016), 526–532.
15. Vorona, I.O., Yavetskiy, R.P., Doroshenko, A.G., Parkhomenko, S.V., Baumer, V.N., Tolmachev, A.V., Kosyanov, D.Yu, Vorona, V.I., Kuryavyi, V.G., Greculeasa, M., Gheorghe, L., Hau, S., Gheorghe, C., Croitoru, G., J. Eur. Ceram. Soc. 37 (2017), 4115–4122.
16. Isaenko, L., Yelisseyev, A., Lobanov, S., Petrov, V., Rotermund, F., Slekys, G., Zondy, J.-J., J. Appl. Phys. 91 (2002), 9475–9480.
17. Zondy, J.-J., Vedenyapin, V., Yelisseyev, A., Lobanov, S., Isaenko, L., Petrov, V., Opt. Lett. 30 (2005), 2460–2462.
18. Li, X., Peng, W., Fu, H., J. Alloy. Comp. 581 (2013), 867–872.
19. Petrov, V., Prog. Quant. Electron. 42 (2015), 1–106.
20. Gratz, R., Sidorov, V., Tsiok, O., Lorenz, B., High Pres. Res. 8 (1991), 445–447.
21. Kuriyama, K., Nozaki, T., J. Appl. Phys. 52 (1981), 6441–6443.
22. Li, L.-H., Li, J.-Q., Wu, L.M., J. Solid State Chem. 181 (2008), 2462–2468.
23. Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Ananchenko, L.N., Isaenko, L.I., Yelisseyev, A.P., Khyzhun, O.Y., Opt. Mater. 66 (2017), 149–159.
24. El-Korashy, A., Abdel-Rahim, M.A., El-Zahed, H., Thin Solid Films 338 (1999), 207–212.
25. Ammar, A.H., Farid, A.M., Seyam, M.A.M., Vacuum 66 (2002), 27–38.
26. Santosh Kumar, M.C., Pradeep, B., Vacuum 72 (2004), 369–378.
27. Ozaki, S., Adachi, S., J. Appl. Phys., 100, 2006, 113526.
28. Isaenko, L.I., Vasilyeva, I.G., J. Cryst. Growth 310 (2008), 1954–1960.
29. Tupitsyn, E., Bhattacharya, P., Rowe, E., Matei, L., Cui, Y., Buliga, V., Groza, M., Wiggins, B., Burger, A., Stowe, A., J. Cryst. Growth 393 (2014), 23–27.
30. Beutler, M., Rimke, I., Büttner, E., Petrov, V., Isaenko, L., Opt. Mater. Express 3 (2013), 1834–1838.
31. Isaenko, L.I., Yelisseyev, A.P., Semicond. Sci. Technol., 31, 2016, 123001.
32. Tupitsyn, E., Bhattacharya, P., Rowe, E., Matei, L., Groza, M., Wiggins, B., Burger, A., Stowe, A., Appl. Phys. Lett., 101, 2012, 202101.
33. Stowe, A.C., Woodward, J., Tupitsyn, E., Rowe, E., Wiggins, B., Matei, L., Bhattacharya, P., Burger, A., J. Cryst. Growth 379 (2013), 111–114.
34. Kamijoh, T., Kuriyama, K., J. Appl. Phys. 52 (1981), 1102–1103.
35. Atuchin, V.V., Galashov, E.N., Khyzhun, O.Y., Bekenev, V.L., Pokrovsky, L.D., Borovlev, Y.A., Zhdankov, V.N., J. Solid State Chem. 236 (2016), 24–31.
36. Bai, C., Lin, Z.S., Wang, Z.Z., Chen, C.T., J. Appl. Phys., 103, 2008, 083111.
37. Li, L.-H., Li, J.-Q., Wu, L.-M., J. Solid State Chem. 181 (2008), 2462–2468.
38. Reshak, A.H., Auluck, S., Kityk, I.V., Al-Douri, Y., Khenata, R., Bouhemadou, A., Appl. Phys. a 94 (2009), 315–320.
39. Ma, T.-H., Yang, C.-H., Xie, Y., Sun, L., Lv, W.-Q., Wang, R., Ren, Y.-L., Physica B 405 (2010), 363–368.
40. Li, Y., Fan, W., Sun, H., Cheng, X., Li, P., Zhao, X., J. Appl. Phys., 106, 2009, 033704.
41. Ma, T.-H., Yang, C.-H., Xie, Y., Sun, L., Lv, W.-Q., Wang, R., Zhu, C.-Q., Wang, M., Comput. Mater. Sci. 47 (2009), 99–105.
42. Ma, T., Sun, L., Xu, C., Chen, Y., J. Alloy. Comp. 509 (2011), 9733–9747.
43. Ma, T.-H., Zhuang, Z.-P., Ren, Y.-L., Acta Phys. Sin., 61, 2012, 197101.
44. Ma, C.-G., Brik, M.G., Solid State Commun. 203 (2015), 69–74.
45. Lagoun, B., Bentria, T., Bentria, B., Comput. Mater. Sci. 68 (2013), 379–383.
46. Reshak, A.H., Auluck, S., Kityk, I.V., J. Alloy. Comp. 473 (2009), 20–24.
47. Andreev, V.M., Atuchin, V.V., Lanskii, G.V., Popov, N.V., Trotsenko, N., Solid State Sci. 7 (2005), 1188–1193.
48. Vedenyapin, V., Isaenko, L., Yelisseyev, A., Lobanov, S., Tyazhev, A., Marchev, G., Petrov, V., Proc. SPIE, 2011, 7917.
49. Isaenko, L., Yelisseyev, A., Lobanov, S., Vedenyapin, V., Krinitsyn, P., Petrov, V., Crystals, 6, 2016, 85.
50. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J., WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz. 2001, Technical Universität Wien, Austria (ISBN 3-9501031-1-2).
51. Perdew, J.P., Burke, S., Ernzerhof, M., Phys. Rev. Lett. 77 (1996), 3865–3868.
52. Tran, F., Blaha, P., Phys. Rev. Lett., 102, 2009, 226401.
53. Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Denysyuk, N.M., Shkumat, P.N., Tarasova, A.Y., Isaenko, L.I., Khyzhun, O.Y., J. Phys. Chem. Solid. 91 (2016), 25–33.
54. Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Denysyuk, N.M., Shkumat, P.N., Tarasova, A.Y., Isaenko, L.I., Khyzhun, O.Y., Opt. Mater. 53 (2016), 64–72.
55. Bhamu, K.S., Praveen, C.S., J. Solid State Chem. 256 (2017), 101–108.
56. Assali, A., Bouslama, M., Reshak, A.H., Chaabane, L., Mater. Res. Bull. 95 (2017), 588–596.
57. Solodovnikov, S.F., Atuchin, V.V., Solodovnikova, Z.A., Khyzhun, O.Y., Danylenko, M.I., Pishchur, D.P., Plyusnin, P.E., Pugachev, A.M., Gavrilova, T.A., Yelisseyev, A.P., Reshak, A.H., Alahmed, Z.A., Habubi, N.F., Synthesis, structural. Inorg. Chem. 56 (2017), 3276–3286.
58. Tarasova, A.Y., Isaenko, L.I., Kesler, V.G., Pashkov, V.M., Yelisseyev, A.P., Denysyuk, N.M., Khyzhun, O.Y., J. Phys. Chem. Solid. 73 (2012), 674–682.
59. Rajagopal, S., Nataraj, D., Khyzhun, O.Y., Djaoued, Yahia, Robichaud, Jacques, Kim, Chang-Koo, Mater. Chem. Phys. 141 (2013), 383–392.
60. Khyzhun, O.Y., Halyan, V.V., Danyliuk, I.V., Ivashchenko, I.A., J. Mater. Sci. Mater. Electron. 27 (2016), 3258–3264.
61. Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Pokrovsky, L.D., Shlegel, V.N., Ivannikova, N.V., Mater. Des. 105 (2016), 315–322.
62. Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A., Phys. Rev. B 48 (1993), 16929–16934.
63. Novak, P., Boucher, F., Gressier, P., Blaha, P., Schwarz, K., Phys. Rev. B, 63, 2001, 235114.
64. Blöchl, P.E., Jepsen, O., Andersen, O.K., Phys. Rev. B 49 (1994), 16223–16233.
65. Wooten, F., Optical Properties of Solids. 1972, Academic Press, New York.
66. Ambrosch-Draxl, C., Sofo, J.O., Comput. Phys. Commun. 175 (2006), 1–14.