Инд. авторы: Vins V.G., Yelisseyev A.P., Smovzh D.V., Novopashin S.A.
Заглавие: Optical properties of CVD single crystal diamonds before and after different post-growth treatments
Библ. ссылка: Vins V.G., Yelisseyev A.P., Smovzh D.V., Novopashin S.A. Optical properties of CVD single crystal diamonds before and after different post-growth treatments // Diamond and Related Materials. - 2018. - Vol.86. - P.79-86. - ISSN 0925-9635. - EISSN 1879-0062.
Идентиф-ры: DOI: 10.1016/j.diamond.2018.04.022; РИНЦ: 35522338; SCOPUS: 2-s2.0-85046424194; WoS: 000435064400011;
Реферат: eng: Single crystal diamonds grown by chemical vapor deposition (CVD) before and after different post-growth treatments were studied using optical spectroscopy. The most pronounced changes in color were observed after irradiation with subsequent annealing at 800 °C whereas a weakening of gray tint took place after the high-pressure high-temperature annealing. Low-pressure high-temperature annealing in microwave plasmas of different composition and by electric arc discharge did not produce a noticeable effect on the diamond properties. Signals from nitrogen-vacancy complexes were detected in the absorption and luminescence spectra of CVD diamonds, but the pink tint in the irradiated and annealed diamonds is due to Si–V complexes, not N–V. The peaks at 150 and 262 K associated with boron were observed in thermoluminescence (TL) curve of original CVD diamonds. Combined irradiation and annealing allowed us to create deep traps of charge carriers responsible for TL peaks in the 430 to 470 K range, which made CVD diamonds promising for TL dosimetry. © 2018
Ключевые слова: Chemical vapor deposition; Defects characterization; Detectors; Diamond crystal; Optical properties; Radiation induced effects; Absorption; Annealing; Detectors; Electric arcs; Irradiation; Optical properties; Radiation effects; Single crystals; Synthetic diamonds; Thermoluminescence; Chemical vapor depositions (CVD); Diamond crystals; Electric arc discharges; High pressure high temperature; Chemical vapor deposition; Single crystal diamond; Radiation-induced effects; Luminescence spectrum; High-temperature annealing; Absorption;
Издано: 2018
Физ. хар-ка: с.79-86
Цитирование: 1. Angus, J.C., Diamond synthesis by chemical vapor deposition: the early years. Diam. Relat. Mater. 49 (2014), 77–86.
2. Martineau, P.M., Lawson, S.C., Taylor, A.J., Quinn, S., Evans, D.J.F., Crowder, M., Identification of synthetic diamond grown using chemical vapor deposition (CVD). G&G 40:N1 (2004), 2–25.
3. Wang, W., Hall, M.S., Moe, K.S., Tower, J., Moses, T.M., Latest generation CVD-grown synthetic diamonds from Apollo Diamond Inc. G&G 43:N4 (2007), 294–312.
4. Eaton-Magaña, S., Shigley, J.E., Observations on CVD grown synthetic diamonds: a review. G&G 52:N3 (2016), 222–245.
5. Amosov, V.N., Meschaninov, S.A., Nemtsov, G.E., Rodiononv, N.B., Terentyev, S.A., Thermoluminescence dosimeter based on synthetic diamond. Appl. Phys. 6 (2011), 83–86 (in Russian).
6. Vittone, E., Manfredotti, C., Fizzotti, F., Giudice, A.L., Polesello, P., Ralchenko, V., Thermoluminescence in CVD diamond films: application to radiation dosimetry. Diam. Relat. Mater. 8:N7 (1999), 1234–1239.
7. Barboza-Flores, M., Meléndrez, R., Chernov, V., Castañeda, B., Pedroza-Montero, M., Gan, B., Ahn, J., Zhang, Q., Yoon, S.F., Thermoluminescence in CVD diamond films: application to actinometric dosimetry. Radiat. Prot. Dosim. 100:1–4 (2002), 443–446.
8. Benabdesselam, M., Serrano, B., Iacconi, P., Wrobel, F., Lapraz, D., Butler, J.E., Thermoluminescence properties of CVD diamond for clinical dosimetry use. Radiat. Prot. Dosim. 120:N1–4 (2006), 87–90.
9. Rebisz, M., Guerrero, M.J., Tromson, D., Pomorski, M., Marczewska, B., Nesladek, M., Bergonzo, P., CVD diamond for thermoluminescence dosimetry: optimisation of the readout process and application. Diam. Relat. Mater. 13 (2004), 796–801.
10. Vins, V.G., Yelisseyev, A.P., Lobanov, S.S., Afonin, D.V., Maksimov, A.Yu., Blinkov, A.Ye., APHT treatment of brown type Ia natural diamonds: dislocation movement or vacancy cluster destruction?. Diam. Relat. Mater. 19 (2010), 829–832.
11. Vins, V.G., Yelisseyev, A.P., Effect of annealing at high pressures and temperatures on the defect-admixture structure of natural diamonds. Inorg. Mater. Appl. Res. 1:N4 (2010), 303–310.
12. Yelisseyev, A., Vins, V., Lobanov, S., Afonin, D., Maksimov, A., Blinkov, A., Aggregation of donor nitrogen in irradiated Ni-containing synthetic diamonds. J. Cryst. Growth 318 (2011), 539–544.
13. Vins, V.G., Yelisseyev, A.P., Starostenkov, M.D., Generation and annealing of radiation- induced defects in electron-irradiated diamonds. Basic Probl. Mater. Sci. 8:N1 (2011), 66–79 (in Russian).
14. Dobrinets, I.A., Vins, V.G., Zaitsev, A.M., HPHT-Treated Diamonds. 2013, Springer Berlin Heidelberg (257 p).
15. Zaitsev, A.M., Optical Properties of Diamond: Data Handbook. 2001, Springer Verlag.
16. Clark, C.D., Kanda, H., Kiflawi, I., Sittas, G., Silicon in Diamond, Proc. Diamond Conference. 1993, 17.1 Bristol, UK.
17. Wang, C., Kurtsiefer, C., Weinfurter, H., Burchard, B., Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B, 39, 2006, 37.
18. Mita, Y., Change of absorption spectra in type Ib diamond with heavy neutron irradiation. Phys. Rev. B 53 (1996), 11360–11365.
19. Yakoubovskii, K., Adriaenssens, G.J., Luminescence excitation spectra in diamond. Phys. Rev., B61, 2000, 10174.
20. D'Haenens-Johansson, U.F.S., Ardon, T., Wang, W., CVD synthetic gem diamonds with high silicon vacancy concentrations. Conference on New Diamond and Nano Carbons, Shizuoka, Japan, May 2015.
21. Allers, L., Collins, A.T., Hiscock, J., The annealing of interstitial-related optical centers in type IIa natural and CVD diamond. Diam. Relat. Mater. 7 (1998), 228–232.
22. Collins, A.T., Allers, L., Wort, C.J.H., Scarsbrook, G.A., The annealing of radiation damage in de beers colorless CVD diamond. Diam. Relat. Mater. 3 (1994), 932–935.
23. Lawson, S.C., Fisher, D., Hunt, D.C., Newton, M.R., On the existence of positively charged single-substitutional nitrogen in diamond. J. Phys. Condens. Matter 10 (1998), 6171–6181.
24. Chrenko, R.M., Strong, H.M., Tuft, R.E., Dispersed paramagnetic nitrogen content of large laboratory diamonds. Philos. Mag. 23 (1971), 313–318.
25. Hounsome, L.S., Jones, R., Martineau, P.M., Fisher, D., Shaw, M.J., Briddon, P.R., Öberg, S., Origin of brown coloration in diamond. Phys. Rev. B, 73(2006), 2006, N125203.
26. Sobolev, E.V., Harder Than Diamond, Novosibirsk, Nauka. 1984 126 p. (in Russian).
27. O.V. Kononov (Moscow State Uni.), (2007), Private communication.
28. D. J. Twitchen, P. M. Martineau, G. A. Scarsbrook, “Colored diamond”, US patent #7172655, filed in 2003.
29. Eaton-Magaña, S., Ardona, T., Zaitsev, A., LPHT annealing of brown-to-yellow type Ia diamonds. Diam. Relat. Mater. 77 (2017), 159–170.
30. Faretta, C., Handbook of Thermoluminescence, World Scientific, New Jersey·London·Singapore·Hong Kong. 2003.
31. Halperin, A., Chen, R., Thermoluminescence of semiconducting diamonds. Phys. Rev. 148 (1966), 839–845.
32. Sobolev, E.V., Yelisseyev, A.P., Thermostimulated luminescence and phosphorescence of natural diamonds at low temperatures. Sov. J. Struct. Chem. 17:5 (1976), 933–935 (in Russian).
33. Yelisseyev, A., Kanda, H., Optical centers related to 3d transition metals in diamond. New Diamond Front. Carbon Technol. 17:N3 (2007), 127–178.