Инд. авторы: Korobeynikov S.N., Alyokhin V.V., Babichev A.V.
Заглавие: Simulation of mechanical parameters of graphene using the DREIDING force field
Библ. ссылка: Korobeynikov S.N., Alyokhin V.V., Babichev A.V. Simulation of mechanical parameters of graphene using the DREIDING force field // Acta Mechanica. - 2018. - Vol.229. - Iss. 6. - P.2343-2378. - ISSN 0001-5970.
Идентиф-ры: DOI: 10.1007/s00707-018-2115-5; РИНЦ: 35532063; РИНЦ: 35532063; SCOPUS: 2-s2.0-85045073196; WoS: 000432414000004;
Реферат: eng: Molecular mechanics/molecular dynamics (MM/MD) methods are widely used in computer simulations of deformation (including buckling, vibration, and fracture) of low-dimensional carbon nanostructures (single-layer graphene sheets (SLGSs), single-walled nanotubes, fullerenes, etc). In MM/MD simulations, the interactions between carbon atoms in these nanostructures are modeled using force fields (e.g., AIREBO, DREIDING, MM3/MM4). The objective of the present study is to fit the DREIDING force field parameters (see Mayo et al. J Phys Chem 94:8897–8909, 1990) to most closely reproduce the mechanical parameters of graphene (Young’s modulus, Poisson’s ratio, bending rigidity modulus, and intrinsic strength) known from experimental studies and quantum mechanics simulations since the standard set of the DREIDING force field parameters (see Mayo et al. 1990) leads to unsatisfactory values of the mechanical parameters of graphene. The values of these parameters are fitted using primitive unit cells of graphene acted upon by forces that reproduce the homogeneous deformation of this material in tension/compression, bending, and fracture. (Different sets of primitive unit cells are used for different types of deformation, taking into account the anisotropic properties of graphene in states close to failure.) The MM method is used to determine the dependence of the mechanical moduli of graphene (Young’s modulus, Poisson’s ratio, and bending rigidity modulus) on the scale factor. Computer simulation has shown that for large linear dimensions of SLGSs, the mechanical parameters of these sheets are close to those of graphene. In addition, computer simulation has shown that accounting for in-layer van der Waals forces has a small effect on the value of the mechanical moduli of graphene. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature.
Ключевые слова: Single walled nanotubes; Mechanics simulations; Mechanical parameters; Mechanical modulus; Homogeneous deformation; DREIDING force field; Carbon Nanostructures; Anisotropic property; Yarn; Single-walled carbon nanotubes (SWCN); Rigidity; Quantum theory; Fracture; Buckling; Bending (deformation); 74K20; 74E15; Van der Waals forces; Graphene;
Издано: 2018
Физ. хар-ка: с.2343-2378
Цитирование: 1. Allinger, N.L., Yuh, Y.H., Lii, J.-H.: Molecular mechanics: the MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989)
2. Alyokhin, V.V., Annin, B.D., Babichev, A.V., Korobeynikov, S.N.: Free vibrations and buckling of graphene sheets. Dokl. Phys. 58(11), 487–490 (2013)
3. Alzebdeh, K.I.: An atomistic-based continuum approach for calculation of elastic properties of single-layered graphene sheet. Solid State Commun. 177, 25–28 (2014)
4. Andrew, R.C., Mapasha, R.E., Ukpong, A.M., Chetty, N.: Mechanical properties of graphene and boronitrene. Phys. Rev. B 85, 125428 (2012)
5. Androulidakis, Ch., Tsoukleri, G., Koutroumanis, N., Gkikas, G., Pappas, P., Parthenios, J., Papagelis, K., Galiotis, C.: Experimentally derived axial stress-strain relations for two-dimensional materials such as monolayer graphene. Carbon 81, 322–328 (2015)
6. Annin, B.D., Korobeynikov, S.N., Babichev, A.V.: Computer simulation of a twisted nanotube buckling. J. Appl. Ind. Math. 3(3), 318–333 (2009)
7. Annin, B.D., Alekhin, V.V., Babichev, A.V., Korobeynikov, S.N.: Computer simulation of nanotube contact. Mech. Solids 45(3), 352–369 (2010)
8. Annin, B.D., Alekhin, V.V., Babichev, A.V., Korobeynikov, S.N.: Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes. Mech. Solids 47(5), 544–559 (2012)
9. Ansari, R., Mirnezhad, M., Sahmani, S.: An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48, 1355–1367 (2013)
10. Ansari, R., Rouhi, H., Mirnezhad, M.: A hybrid continuum and molecular mechanics model for the axial buckling of chiral single-walled carbon nanotubes. Curr. Appl. Phys. 14, 1360–1368 (2014)
11. Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys. Rev. B 69, 115415 (2004)
12. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)
13. Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)
14. Berinskii, I., Altenbach, H.: In-plane and out-of-plane elastic properties of two-dimensional single crystal. Acta Mech. 228, 683–691 (2017)
15. Berinskii, I.E., Borodich, F.M.: Elastic in-plane properties of 2D linearized models of graphene. Mech. Mater. 62, 60–68 (2013)
16. Berinskii, I.E., Borodich, F.M.: On the isotropic elastic properties of graphene crystal lattice. In: Altenbach, H., Morozov, N.F. (eds.) Advanced Structured Materials, vol. 30: Surface Effects in Solid Mechanics, pp. 33–42. Springer, Berlin, Heidelberg (2013)
17. Berinskii, I., Krivtsov, A.: Linear oscillations of suspended graphene. In: Altenbach, H., Mikhasev, G.I. (eds.) Advanced Structured Materials, vol. 45: Shell and Membrane Theories in Mechanics and Biology, pp. 99–107. Springer International Publishing, Cham (2015)
18. Berinskii, I.E., Krivtsov, A.M., Kudarova, A.M.: Bending stiffness of a graphene sheet. Phys. Mesomech. 17(4), 356–364 (2014)
19. Blakslee, O.L., Proctor, D.G., Seldin, E.J., Spence, G.B., Weng, T.: Elastic constants of compression annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970)
20. Bogár, F., Mintmire, J.W., Bartha, F., Mező, T., van Alsenoy, C.: Density-functional study of the mechanical and electronic properties of narrow carbon nanotubes under axial stress. Phys. Rev. B 72, 085452 (2005)
21. Bosak, A., Krisch, M.: Elasticity of single-crystalline graphite: inelastic x-ray scattering study. Phys. Rev. B 75, 153408 (2007)
22. Bowman, J.C., Krumhansl, J.A.: The low-temperature specific heat of graphite. J. Phys. Chem. Solids 6, 367–379 (1958)
23. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of dimond films. Phys. Rev. B 42, 9458–9471 (1990)
24. Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008)
25. Burkert, U., Allinger, N.L.: Molecular Mechanics. American Chemical Society, Washington (1982)
26. Cadelano, E., Palla, P.L., Giordano, S., Colombo, L.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102, 235502 (2009)
27. Caillerie, D., Mourad, A., Raoult, A.: Discrete homogenization in graphene sheet modeling. J. Elast. 84, 33–68 (2006)
28. Cao, G.: Atomistic studies of mechanical properties of graphene. Polymers 6, 2404–2432 (2014)
29. Chandraseker, K., Mukherjee, S.: Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes. Comput. Mater. Sci. 40, 147–158 (2007)
30. Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)
31. Chen, T., Cheung, R.: Mechanical properties of graphene. In: Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L. (eds.) Graphene Science Handbook: Mechanical and Chemical Properties, pp. 3–15. CRC Press, Taylor and Francis Group, London (2016)
32. Cheng, H.C., Liu, Y.L., Hsu, Y.C., Chen, W.H.: Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solids Struct. 46, 1695–1704 (2009)
33. Cho, J., Luo, J.J., Daniel, I.M.: Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Compos. Sci. Technol. 67, 2399–2407 (2007)
34. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)
35. Davini, C.: Homogenization of a graphene sheet. Contin. Mech. Thermodyn. 26, 95–113 (2014)
36. Dominguez-Rodriguez, G., Tapia, A., Aviles, F.: An assessment of finite element analysis to predict the elastic modulus and Poisson’s ratio of single-wall carbon nanotubes. Comput. Mater. Sci. 82, 257–263 (2014)
37. Ducéré, J.-M., Lepetit, C., Chauvin, R.: Carbo-graphite: structural, mechanical and electronic properties. J. Phys. Chem. C 117(42), 21671–21681 (2013)
38. Faccio, R., Denis, P.A., Pardo, H., Goyenola, C., Mombru, A.W.: Mechanical properties of graphene nanoribbons. J. Phys. Condens. Matter 21, 285304 (2009)
39. Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)
40. Favata, A., Micheletti, A., Podio-Guidugli, P., Pugno, N.M.: Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J. Elast. 125, 1–37 (2016)
41. Frank, O., Mohr, M., Maultzsch, J., Thomsen, C., Riaz, I., Jalil, R., Novoselov, K.S., Tsoukleri, G., Parthenios, J., Papagelis, K., Kavan, L., Galiotis, C.: Raman 2D-band splitting in graphene: theory and experiment. ACS Nano 5(3), 2231–2239 (2011)
42. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)
43. Genoese, Al, Genoese, An, Rizzi, N.L., Salerno, G.: On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos. Part B Eng. 115, 316–329 (2017)
44. Georgantzinos, S.K., Giannopoulos, G.I.: Thermomechanical buckling of single walled carbon nanotubes by a structural mechanics method. Diam. Relat. Mater. 80, 27–37 (2017)
45. Georgantzinos, S.K., Giannopoulos, G.I., Anifantis, N.K.: Coupled thermomechanical behavior of graphene using the spring-based finite element approach. J. Appl. Phys. 120, 014305 (2016)
46. Georgantzinos, S.K., Markolefas, S., Giannopoulos, G.I., Katsareas, D.E., Anifantis, N.K.: Designing pinhole vacancies in graphene towards functionalization: effects on critical buckling load. Superlattices Microstruct. 103, 343–357 (2017)
47. Ghaderi, S.H., Hajiesmaili, E.: Nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method. Mater. Sci. Eng. A 582, 225–234 (2013)
48. Giannopoulos, G.I.: Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction. Comput. Mater. Sci. 53, 388–395 (2012)
49. Giannopoulos, G.I.: Crack identification in graphene using eigenfrequencies. Int. J. Appl. Mech. 9(1), 1750009 (2017)
50. Giannopoulos, G.I., Georgantzinos, S.K.: Establishing detection maps for carbon nanotube mass sensors: molecular versus continuum mechanics. Acta Mech. 228, 2377–2390 (2017)
51. Giannopoulos, G.I., Liosatos, I.A., Moukanidis, A.K.: Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach. Phys. E 44, 124–134 (2011)
52. Gillis, P.P.: Calculating the elastic constants of graphite. Carbon 22(4–5), 387–391 (1984)
53. Girifalco, L.A., Hodak, M., Lee, R.S.: Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62, 13104–13110 (2000)
54. Glukhova, O.E.: Mechanical properties of graphene sheets. In: Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L. (eds.) Graphene Science Handbook: Mechanical and Chemical Properties, pp. 61–78. CRC Press, Taylor and Francis Group, London (2016)
55. Goldstein, R.V., Chentsov, A.V.: A discrete-continuous model of a nanotube. Mech. Solids 40(4), 45–59 (2005)
56. Goringe, C.M., Bowler, D.R., Hernández, E.: Tight-binding modelling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997)
57. Gui, G., Li, J., Zhong, J.: Band structure engineering of graphene by strain: first-principles calculations. Phys. Rev. B 78, 075435 (2008)
58. Gupta, S.S., Batra, R.C.: Elastic properties and frequencies of free vibrations of single-layer graphene sheets. J. Comput. Theor. Nanosci. 7, 2151–2164 (2010)
59. Hajgató, B., Güryel, S., Dauphin, Y., Blairon, J.-M., Miltner, H.E., van Lier, G., de Proft, F., Geerlings, P.: Theoretical investigation of the intrinsic mechanical properties of single- and double-layer graphene. J. Phys. Chem. C 116, 22608–22618 (2012)
60. Hartmann, M.A., Todt, M., Rammerstorfer, F.G., Fischer, F.D., Paris, O.: Elastic properties of graphene obtained by computational mechanical tests. EPL 103, 68004 (2013)
61. Hernandez, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80(20), 4502–4505 (1998)
62. Holec, D., Hartmann, M.A., Fischer, F.D., Rammerstorfer, F.G., Mayrhofer, P.H., Paris, O.: Curvature-induced excess surface energy of fullerenes: density functional theory and Monte Carlo simulations. Phys. Rev. B 81, 235403 (2010)
63. Hollerer, S.: Buckling analysis of carbon nanotubes—a molecular mechanics approach using the finite element framework. Proc. Appl. Math. Mech. 11, 221–222 (2011)
64. Hollerer, S., Celigoj, C.C.: Buckling analysis of carbon nanotubes by a mixed atomistic and continuum model. Comput. Mech. 51, 765–789 (2013)
65. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)
66. Kalosakas, G., Lathiotakis, N.N., Galiotis, C., Papagelis, K.: In-plane force fields and elastic properties of graphene. J. Appl. Phys. 113, 134307 (2013)
67. Klintenberg, M., Lebegue, S., Ortiz, C., Sanyal, B., Fransson, J., Eriksson, O.: Evolving properties of two-dimensional materials: from graphene to graphite. J. Phys. Condens. Matter 21, 335502 (2009)
68. Koenig, S.P., Boddeti, N.G., Dunn, M.L., Bunch, J.S.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011)
69. Konstantinova, E., Dantas, S.O., Barone, P.M.V.B.: Electronic and elastic properties of two-dimensional carbon planes. Phys. Rev. B 74, 035417 (2006)
70. Korobeinikov, S.N.: The numerical solution of nonlinear problems on deformation and buckling of atomic lattices. Int. J. Fract. 128(1), 315–323 (2004)
71. Korobeinikov, S.N., Bondarenko, M.I.: A material and geometrical nonlinear analysis of shells including large rotation increments. In: Désidéri, J.-A., et al. (eds.) umerical Methods in Engineering ’96 (Proceedings of the 2nd ECCOMAS Conference), pp. 754–762. Wiley, Chichester (1996)
72. Korobeinikov, S.N., Agapov, V.P., Bondarenko, M.I., Soldatkin, A.N.: The general purpose nonlinear finite element structural analysis program PIONER. In: Sendov, B., Lazarov, R., Dimov, I. (eds.) Proceedings of International Conference on Numerical Methods and Applications, pp. 228–233. Publishing House of the Bulgarian Academy of Science, Sofia (1989)
73. Korobeinikov, S.N., Alyokhin, V.V., Bondarenko, M.I.: Application of a finite element method for the solution of three dimensional contact problems. In: Papadrakakis, M., Topping, B.H.V. (eds.) Advances in Simulation and Interaction Techniques, pp. 165–175. Civil-Company Press, Edinburg (1994)
74. Korobeynikov, S.N.: Nonlinear Strain Analysis of Solids. Sib. Div. Russ. Acad. Sci, Novosibirsk (2000) (in Russian)
75. Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008)
76. Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V.: Using stability analysis of discrete elastic systems to study the buckling of nanostructures. Arch. Mech. 64(4), 367–404 (2012)
77. Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: Application of the molecular mechanics method to simulation of buckling of single-walled carbon nanotubes. Eng. Fract. Mech. 130, 83–95 (2014)
78. Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V.: Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math. Mech. Solids 20(7), 836–870 (2015)
79. Koskinen, P., Kit, O.O.: Approximate modeling of spherical membranes. Phys. Rev. B 82, 235420 (2010)
80. Koskinen, P., Mäkinen, V.: Density-functional tight-binding for beginners. Comput. Mater. Sci. 47, 237–253 (2009)
81. Krivtsov, A.M., Morozov, N.F.: On mechanical characteristics of nanocrystals. Phys. Solid State 44(12), 2260–2265 (2002)
82. Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)
83. Kumar, S., Hembram, K.P.S.S., Waghmare, U.V.: Intrinsic buckling strength of graphene: first-principles density functional theory calculations. Phys. Rev. B 82, 115411 (2010)
84. Kurzin, V.B., Korobeinikov, S.N., Ryabchenko, V.P., Tkacheva, L.A.: Natural vibrations of a uniform cascade of hydraulic-turbine blades in a fluid. J. Appl. Mech. Tech. Phys. 38(2), 240–249 (1997)
85. Kuzkin, V.A., Krivtsov, A.M.: Description for mechanical properties of graphene using particles with rotational degrees of freedom. Dokl. Phys. 56(10), 527–530 (2011)
86. Le, M.-Q., Batra, R.C.: Single-edge crack growth in graphene sheets under tension. Comput. Mater. Sci. 69, 381–388 (2013)
87. Lee, J.G.: Computational Materials Science: An Introduction, 2nd edn. CRC Press, Boca Raton (2017)
88. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)
89. Lee, J.U., Yoon, D., Cheong, H.: Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett. 12, 4444–4448 (2012)
90. Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)
91. Li, H., Guo, W.: Transversely isotropic elastic properties of single-walled carbon nanotubes by a rectangular beam model for the C–C bonds. J. Appl. Phys. 103, 103501 (2008)
92. Lindahl, N., Midtvedt, D., Svensson, J., Nerushev, O.A., Lindvall, N., Isacsson, A., Campbell, E.E.B.: Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett. 12, 3526–3531 (2012)
93. Liu, W.K., Karpov, E.G., Park, H.S.: Nano Mechanics and Materials: Theory, Multiscale Methods and Aplications. Wiley, Hoboken (2006)
94. Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007)
95. Lu, Q., Huang, R.: Nonlinear mechanics of single-atomic-layer graphene sheets. Int. J. Appl. Mech. 1(3), 443–467 (2009)
96. Lu, Q., Arroyo, M., Huang, R.: Elastic bending modulus of monolayer graphene. J. Phys. D Appl. Phys. 42, 102002 (2009)
97. Lucas, A.A., Lambin, A.A., Smalley, R.E.: On the energetics of tubular fullerenes. J. Phys. Chem. Solids 54(5), 587–593 (1993)
98. Marenić, E., Ibrahimbegovic, A., Sorić, J., Guidault, P.A.: Homogenized elastic properties of graphene for small deformations. Materials 6, 3764–3782 (2013)
99. Marianetti, C.A., Yevick, H.G.: Failure mechanisms of graphene under tension. Phys. Rev. Lett. 105, 245502 (2010)
100. Mayo, S.L., Olafson, B.D., Goddard III, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)
101. Memarian, F., Fereidoon, A., Ganji, M.D.: Graphene Young’s modulus: molecular mechanics and DFT treatments. Superlattices Microstruct. 85, 348–356 (2015)
102. Michel, K.H., Verberck, B.: Theory of the elastic constants of graphite and graphene. Phys. Status Solidi B 245(10), 2177–2180 (2008)
103. Mielke, S.L., Troya, D., Zhang, S., Li, J.-L., Xiao, S., Car, R., Ruoff, R.S., Schatz, G.C., Belytschko, T.: The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004)
104. Mirnezhad, M., Modarresi, M., Ansari, R., Roknabadi, M.R.: Effect of temperature on Young’s modulus of graphene. J. Therm. Stresses 35, 913–920 (2012)
105. Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005)
106. Muñoz, E., Singh, A.K., Ribas, M.A., Penev, E.S., Yakobson, B.I.: The ultimate diamond slab: graphane versus graphene. Diam. Relat. Mater. 19, 368–373 (2010)
107. Nasdala, L., Ernst, G.: Development of a 4-node finite element for the computation of nano-structured materials. Comput. Mater. Sci. 33, 443–458 (2005)
108. Nasdala, L., Kempe, A., Rolfes, R.: The molecular dynamic finite element method (MDFEM). CMC Comput. Mater. Contin. 19(1), 57–104 (2010)
109. Nasdala, L., Kempe, A., Rolfes, R.: Are finite elements appropriate for use in molecular dynamic simulations? Compos. Sci. Technol. 72, 989–1000 (2012)
110. Nazemnezhad, R., Hosseini-Hashemi, S.: Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity. Phys. Lett. A 378, 3225–3232 (2014)
111. Nicklow, R., Wakabayashi, N., Smith, H.G.: Lattice dynamics of pyrolytic graphite. Phys. Rev. B 5(12), 4951–4962 (1972)
112. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)
113. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)
114. Ogata, S., Shibutani, Y.: Ideal tensile strength and band gap of single-walled carbon nanotubes. Phys. Rev. B 68, 165409 (2003)
115. Puigdollers, A.R., Alonso, G., Gamallo, P.: First-principles study of structural, elastic and electronic properties of α -, β - and γ -graphyne. Carbon 96, 879–887 (2016)
116. Reddy, C.D., Rajendran, S., Liew, K.M.: Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3), 864–870 (2006)
117. Sahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)
118. Sánchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., Ordejón, P.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59(19), 12678–12688 (1999)
119. Shi, X., Peng, B., Pugno, N.M., Gao, H.: Stretch-induced softening of bending rigidity in graphene. Appl. Phys. Lett. 100, 191913 (2012)
120. Suarez-Martinez, I., Grobert, N., Ewels, C.P.: Nomenclature of sp2 carbon nanoforms. Carbon 50, 741–747 (2012)
121. Tabarraei, A., Shadalou, S., Song, J.-H.: Mechanical properties of graphene nanoribbons with disordered edges. Comput. Mater. Sci. 96, 10–19 (2015)
122. Topsakal, M., Cahangirov, S., Ciraci, S.: The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 96, 091912 (2010)
123. Tserpes, K.I., Papanikos, P.: Finite element modeling of the tensile behavior of carbon nanotubes, graphene and their composites. In: Tserpes, K.I., Silvestre, N. (eds.) Springer Series in Materials Science, vol. 188: Modeling of Carbon Nanotubes, Graphene and their Composites, pp. 303–329. Springer International Publishing, Cham (2014)
124. van Lier, G., van Alsenoy, G., van Doren, V., Geerlings, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181–185 (2000)
125. Wackerfuß, J.: Molecular mechanics in the context of the finite element method. Int. J. Numer. Methods Eng. 77, 969–997 (2009)
126. Walther, J.H., Jaffe, R., Halicioglu, T., Koumoutsakos, P.: Carbon nanotubes in water: structural characteristics and energetics. J. Phys. Chem. B 105, 9980–9987 (2001)
127. Wang, R., Wang, S., Wu, X., Liang, X.: First-principles calculations on third-order elastic constants and internal relaxation for monolayer graphene. Phys. B 405, 3501–3506 (2010)
128. Wei, X., Kysar, J.W.: Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. Int. J. Solids Struct. 49, 3201–3209 (2012)
129. Wei, X., Fragneaud, B., Marianetti, C.A., Kysar, J.W.: Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys. Rev. B 80, 205407 (2009)
130. Wei, D., Song, Y., Wang, F.: A simple molecular mechanics potential for μm scale graphene simulations from the adaptive force matching method. J. Chem. Phys. 134, 184704 (2011)
131. Wei, Y., Wang, B., Wu, J., Yang, R., Dunn, M.L.: Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13(1), 26–30 (2013)
132. Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)
133. Xu, M., Paci, J.T., Oswald, J., Belytschko, T.: A constitutive equation for graphene based on density functional theory. Int. J. Solids Struct. 49, 2582–2589 (2012)
134. Yue, Q., Chang, S., Kang, J., Qin, S., Li, J.: Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions. J. Phys. Chem. C 117(28), 14804–14811 (2013)
135. Zhang, Y., Pan, C.: Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam. Relat. Mater. 24, 1–5 (2012)
136. Zhang, P., Huang, Y., Geubelle, P.H., Klein, P.A., Hwang, K.C.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893–3906 (2002)
137. Zhang, D.-B., Akatyeva, E., Dumitrică, T.: Bending ultrathin graphene at the margins of continuum mechanics. Phys. Rev. Lett. 106, 255503 (2011)
138. Zhao, J., Wang, L., Jiang, J.-W., Wang, Z., Guo, W., Rabczuk, T.: A comparative study of two molecular mechanics models based on harmonic potentials. J. Appl. Phys. 113, 063509 (2013)
139. Zhou, J., Huang, R.: Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids 56, 1609–1623 (2008)
140. Zhou, G., Duan, W., Gu, B.: First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem. Phys. Lett. 333, 344–349 (2001)