Инд. авторы: Longo W.M., Huang Y., Yao Y., Zhao J., Giblin A.E., Wang X., Zech R., Haberzettl T., Jardillier L., Toney J., Liu Z., Krivonogov S., Kolpakova M., Chu G., D'Andrea W.J., Harada N., Nagashima K., Sato M., Yonenobu H., Yamada K., Gotanda K., Shinozuka Y.
Заглавие: Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: Implications for paleotemperature and paleoenvironmental reconstructions
Библ. ссылка: Longo W.M., Huang Y., Yao Y., Zhao J., Giblin A.E., Wang X., Zech R., Haberzettl T., Jardillier L., Toney J., Liu Z., Krivonogov S., Kolpakova M., Chu G., D'Andrea W.J., Harada N., Nagashima K., Sato M., Yonenobu H., Yamada K., Gotanda K., Shinozuka Y. Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: Implications for paleotemperature and paleoenvironmental reconstructions // Earth and Planetary Science Letters. - 2018. - Vol.492. - P.239-250. - ISSN 0012-821X. - EISSN 1385-013X.
Идентиф-ры: DOI: 10.1016/j.epsl.2018.04.002; РИНЦ: 35544191; SCOPUS: 2-s2.0-85045568651; WoS: 000432762000023;
Реферат: eng: Alkenones are C35–C42 polyunsaturated ketone lipids that are commonly employed to reconstruct changes in sea surface temperature. However, their use in coastal seas and saline lakes can be hindered by species-mixing effects. We recently hypothesized that freshwater lakes are immune to species-mixing effects because they appear to exclusively host Group I haptophyte algae, which produce a distinct distribution of alkenones with a relatively consistent response of alkenone unsaturation to temperature. To evaluate this hypothesis and explore the geographic extent of Group I haptophytes, we analyzed alkenones in sediment and suspended particulate matter samples from lakes distributed throughout the mid- and high latitudes of the Northern Hemisphere (n=30). Our results indicate that Group I-type alkenone distributions are widespread in freshwater lakes from a range of different climates (mean annual air temperature range: −17.3–10.9 °C; mean annual precipitation range: 125–1657 mm yr−1; latitude range: 40–81°N), and are commonly found in neutral to basic lakes (pH > 7.0), including volcanic lakes and lakes with mafic bedrock. We show that these freshwater lakes do not feature alkenone distributions characteristic of Group II lacustrine haptophytes, providing support for the hypothesis that freshwater lakes are immune to species-mixing effects. In lakes that underwent temporal shifts in salinity, we observed mixed Group I/II alkenone distributions and the alkenone contributions from each group could be quantified with the RIK37 index. Additionally, we observed significant correlations of alkenone unsaturation (U37 K) with seasonal and mean annual air temperature with this expanded freshwater lakes dataset, with the strongest correlation occurring during the spring transitional season (U37 K=0.029⁎T−0.49; r2=0.60; p<0.0001). We present new sediment trap data from two lakes in northern Alaska (Toolik Lake, 68.632°N, 149.602°W; Lake E5, 68.643°N, 149.458°W) that demonstrate the highest sedimentary fluxes of alkenones in the spring transitional season, concurrent with the period of lake ice melt and isothermal mixing. Together, these data provide a framework for evaluating lacustrine alkenone distributions and utilizing alkenone unsaturation as a lake temperature proxy. © 2018 Elsevier B.V.
Ключевые слова: algae; sea surface temperature; reconstruction; paleoenvironment; paleoclimate; lipid; lake water; alkenone; alga; Lakes; Temperature proxy; Paleoclimates; Paleo-environment; Fresh water lakes; chemotaxonomy; Water; Suspended sediments; Population distribution; Oceanography; Mixing; Ketones; Climate change; Biochemistry; Atmospheric temperature; temperature proxy; paleoenvironment; paleoclimate; freshwater lakes; chemotaxonomy; alkenones; Alkenones; Haptophyceae;
Издано: 2018
Физ. хар-ка: с.239-250
Цитирование: 1. Aponte, J.C., Dillon, J.T., Tarozo, R., Huang, Y., Separation of unsaturated organic compounds using silver-thiolate chromatographic material. J. Chromatogr. A 1240 (2012), 83–89.
2. ARC LTER Database. Available from http://arc-lter.ecosystems.mbl.edu/lakes/lakes-physical-and-chemical-parameters. (Accessed 12 April 2016)
3. Bendif, E.M., Probert, I., Schroeder, D.C., de Vargas, C., On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J. Appl. Phycol. 25 (2013), 1763–1776.
4. Blanz, T., Emeis, K.-C., Siegel, H., Controls on alkenone unsaturation ratios along the salinity gradient between the open ocean and the Baltic Sea. Geochim. Cosmochim. Acta 69 (2005), 3589–3600.
5. Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., Sarnthein, M., Molecular stratigraphy: a new tool for climatic assessment. Nature 320 (1986), 129–133.
6. Chivall, D., M'Boule, D., Sinke-Schoen, D., Sinninghe Damsté, J.S., Schouten, S., van der Meer, M.T.J., Impact of salinity and growth phase on alkenone distributions in coastal haptophytes. Org. Geochem. 67 (2014), 31–34.
7. Chu, G., Sun, Q., Li, S., Zheng, M., Jia, X., Lu, C., Liu, J., Liu, T., Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China. Geochim. Cosmochim. Acta 69 (2005), 4985–5003.
8. Conte, M.H., Eglinton, G., Alkenone and alkenoate distributions within the euphotic zone of the eastern North Atlantic: correlation with production temperature. Deep-Sea Res. Part I 40 (1993), 1935–1961.
9. Conte, M.H., Sicre, M.-A., Rühlemann, C., Weber, J.C., Schulte, S., Schulz-Bull, D., Blanz, T., Global temperature calibration of the alkenone unsaturation index (UK'37) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst., 7, 2006, 10.1029/2005GC001054.
10. Conte, M.H., Thompson, A., Lesley, D., Harris, R.P., Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim. Cosmochim. Acta 62 (1998), 51–68.
11. Conte, M.H., Volkman, J.K., Eglinton, G., Lipid biomarkers in Haptophyta. Green, J.C., Leadbeater, B.S.C., (eds.) The Haptophyte Algae. Systematics Association Special, vol. 656, 1994, Clarendon Press.
12. Coolen, M.J.L., Muyzer, G., Rijpstra, W.I.C., Schouten, S., Volkman, J.K., Sinninghe Damsté, J.S., Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet. Sci. Lett. 223 (2004), 225–239.
13. Coolen, M.J.L., Orsi, W.D., Balkema, C., Quince, C., Harris, K., Sylva, S.P., Filipova-Marinova, M., Giosan, L., Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc. Natl. Acad. Sci. USA 110 (2013), 8609–8614.
14. Cranwell, P.A., Long-chain unsaturated ketones in recent lacustrine sediments. Geochim. Cosmochim. Acta 49 (1985), 1545–1551.
15. Crump, B.C., Amaral-Zettler, L.a., Kling, G.W., Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 6 (2012), 1629–1639.
16. D'Andrea, W.J., Huang, Y., Long chain alkenones in Greenland lake sediments: low δ13C values and exceptional abundance. Org. Geochem. 36 (2005), 1234–1241.
17. D'Andrea, W.J., Huang, Y., Fritz, S.C., Anderson, N.J., Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl. Acad. Sci. USA 108 (2011), 9765–9769.
18. D'Andrea, W.J., Lage, M., Martiny, J.B.H., Laatsch, A.D., Amaral-Zettler, L.a., Sogin, M.L., Huang, Y., Alkenone producers inferred from well-preserved 18S rDNA in Greenland lake sediments. J. Geophys. Res., 111, 2006, G03013.
19. D'Andrea, W.J., Theroux, S., Bradley, R.S., Huang, X., Does phylogeny control UK37-temperature sensitivity? Implications for lacustrine alkenone paleothermometry. Geochim. Cosmochim. Acta 175 (2016), 168–180.
20. Dillon, J.T., Longo, W.M., Zhang, Y., Torozo, R., Huang, Y., Identification of double bond positions in isomeric alkenones from a lacustrine haptophyte. Rapid Commun. Mass Spectrom. 30 (2016), 112–118.
21. Environmental Data Center Team, Meteorological monitoring program at Toolik, Alaska Toolik Field Station, Institute of Arctic Biology. 2017, University of Alaska Fairbanks, Fairbanks, AK 99775.
22. Harada, N., Shin, K.-H., Murata, A., Uchida, M., Nakatani, T., Characteristics of alkenones synthesized by a bloom of Emiliania huxleyi in the Bering Sea. Geochim. Cosmochim. Acta 67 (2003), 1507–1519.
23. He, Y., Zhao, C., Wang, Z., Wang, H., Song, M., Liu, W., Liu, Z., Late Holocene coupled moisture and temperature changes on the northern Tibetan Plateau. Quat. Sci. Rev. 80 (2013), 47–57.
24. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25 (2005), 1965–1978.
25. Livingstone, David M., Lotter, André F., Walker, Ian R., The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: a comparison with air temperature lapse rates. Arct. Antarct. Alp. Res., 1999, 341–352.
26. Longo, W.M., Dillon, J.T., Tarozo, R., Salacup, J.M., Huang, Y., Unprecedented separation of long chain alkenones from gas chromatography with a poly(trifluoropropylmethylsiloxane) stationary phase. Org. Geochem. 65 (2013), 94–102.
27. Longo, W.M., Theroux, S., Giblin, A.E., Zheng, Y., James, T., Huang, Y., Temperature calibration and phylogenetically distinct distributions for freshwater alkenones: evidence from northern Alaskan lakes. Geochim. Cosmochim. Acta 180 (2016), 177–196.
28. McColl, J.L., Climate Variability of the Last 1000 Years in the NW Pacific: High Resolution, Multi-Biomarker Records from Lake Toyoni. Doctoral dissertation, 2016, University of Glasgow.
29. Müller, P.J., Kirst, G., Ruhland, G., Von Storch, I., Rosell-Melé, A., Calibration of the alkenone paleotemperature index UK'37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim. Cosmochim. Acta 62 (1998), 1757–1772.
30. Nakamura, H., Sawada, K., Araie, H., Shiratori, T., Ishida, K., Suzuki, I., Shiraiwa, Y., Composition of long chain alkenones and alkenoates as a function of growth temperature in marine haptophyte Tisochrysis lutea. Org. Geochem. 99 (2016), 78–89.
31. Nakamura, H., Sawada, K., Araie, H., Suzuki, I., Shiraiwa, Y., Long chain alkenes, alkenones and alkenoates produced by the haptophyte alga Chrysotila lamellosa CCMP1307 isolated from a salt marsh. Org. Geochem. 66 (2014), 90–97.
32. Ono, M., Sawada, K., Shiraiwa, Y., Kubota, M., Changes in alkenone and alkenoate distributions during acclimatization to salinity change in Isochrysis galbana: implication for alkenone-based paleosalinity and paleothermometry. Geochem. J. 46 (2012), 235–247.
33. Phillips, D.L., Gregg, J.W., Uncertainty in source partitioning using stable isotopes. Oecologia 127 (2001), 171–179.
34. Plancq, J., Cavazzin, B., Juggins, S., Haig, H.A., Leavitt, P.R., Toney, J.L., Assessing environmental controls on the distribution of long-chain alkenones in the Canadian Prairies. Org. Geochem. 117 (2018), 43–55.
35. Prahl, F.G., Muehlhausen, L.A., Zahnle, D.L., Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52 (1988), 2303–2310.
36. Prahl, F.G., Wakeham, S.G., Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330 (1987), 367–369.
37. Randlett, M.-È., Coolen, M.J.L., Stockhecke, M., Pickarski, N., Litt, T., Balkema, C., Kwiecien, O., Tomonaga, Y., Wehrli, B., Schubert, C.J., Alkenone distribution in Lake Van sediment over the last 270 ka: influence of temperature and haptophyte species composition. Quat. Sci. Rev. 104 (2014), 53–62.
38. Rontani, J.-F., Beker, B., Volkman, J.K., Long-chain alkenones and related compounds 734 in the benthic haptophyte Chrysotila lamellosa Anand HAP 17. Phytochemistry 65 (2004), 117–126.
39. Rontani, J.-F., Volkman, J.K., Prahl, F.G., Wakeham, S.G., Biotic and abiotic degradation of alkenones and implications for U37 K paleoproxy applications: a review. Org. Geochem. 59 (2013), 95–113.
40. Rosell-Melé, A., Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations. Paleoceanography 13 (1998), 694–703.
41. Simon, M., López-García, P., Moreira, D., Jardillier, L., New haptophyte lineages and multiple independent colonizations of freshwater ecosystems. Environ. Microbiol. Rep. 5 (2013), 322–332.
42. Song, M., 2016. Hydrological changes in Asian inland since late Pleistocene and climatic implications of interactions between westerlies and East Asian summer monsoon. HKU Theses Online (HKUTO).
43. Song, M., Zhou, A., He, Y., Zhao, C., Wu, J., Zhao, Y., Liu, W., Liu, Z., Environmental controls on long-chain alkenone occurrence and compositional patterns in lacustrine sediments, northwestern China. Org. Geochem. 91 (2016), 43–53.
44. Sun, Q., Chu, G., Liu, G., Li, S., Wang, X., Calibration of alkenone unsaturation index with growth temperature for a lacustrine species, Chrysotila lamellosa (Haptophyceae). Org. Geochem. 38 (2007), 1226–1234.
45. Theroux, S., D'Andrea, W.J., Toney, J., Amaral-Zettler, L., Huang, Y., Phylogenetic diversity and evolutionary relatedness of alkenone-producing haptophyte algae in lakes: implications for continental paleotemperature reconstructions. Earth Planet. Sci. Lett. 300 (2010), 311–320.
46. Theroux, S., Huang, Y., Amaral-Zettler, L., Comparative molecular microbial ecology of the spring haptophyte bloom in a greenland arctic oligosaline lake. Front. Microbiol., 3, 2012, 415.
47. Theroux, S., Toney, J., Amaral-Zettler, L., Huang, Y., Production and temperature sensitivity of long chain alkenones in the cultured haptophyte Pseudoisochrysis paradoxa. Org. Geochem. 62 (2013), 68–73.
48. Toney, J.L., Huang, Y., Fritz, S.C., Baker, P.A., Grimm, E., Nyren, P., Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochim. Cosmochim. Acta 74 (2010), 1563–1578.
49. Toney, J.L., Leavitt, P.R., Huang, Y., Alkenones are common in prairie lakes of interior Canada. Org. Geochem. 42 (2011), 707–712.
50. Volkman, J.K., Barrerr, S.M., Blackburn, S.I., Sikes, E.L., Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim. Cosmochim. Acta 59 (1995), 513–520.
51. Volkman, J.K., Eglinton, G., Corner, E.D.S., Forsberg, T.E.V., Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19 (1980), 2619–2622.
52. Wang, Z., Liu, Z., Zhang, F., Fu, M., An, Z., A new approach for reconstructing Holocene temperatures from a multi-species long chain alkenone record from Lake Qinghai on the northeastern Tibetan Plateau. Org. Geochem. 88 (2015), 50–58.
53. Warden, L., van der Meer, M.T.J., Moros, M., Sinninghe Damsté, J.S., Sedimentary alkenone distributions reflect salinity changes in the Baltic Sea over the Holocene. Org. Geochem. 102 (2016), 30–44.
54. Zheng, Y., Huang, Y., Andersen, R.A., Amaral-Zettler, L.A., Excluding the di-unsaturated alkenone in the UK37 index strengthens temperature correlation for the common lacustrine and brackish-water haptophytes. Geochim. Cosmochim. Acta 175 (2016), 36–46.
55. Zheng, Y., Tarozo, R., Huang, Y., Optimizing chromatographic resolution for simultaneous quantification of long chain alkenones, alkenoates and their double bond positional isomers. Org. Geochem. 111 (2017), 136–143.
56. Zink, K.G., Leythaeuser, D., Melkonian, M., Schwark, L., Temperature dependency of long-chain alkenone distributions in Recent to fossil limnic sediments and in lake waters. Geochim. Cosmochim. Acta 65 (2001), 253–265.