Инд. авторы: Kruk N.N., Kuibida Y.V., Shokalsky S.P., Kiselev V.I., Gusev N.I.
Заглавие: Late Cambrian – Early Ordovician turbidites of Gorny Altai (Russia): Compositions, sources, deposition settings, and tectonic implications
Библ. ссылка: Kruk N.N., Kuibida Y.V., Shokalsky S.P., Kiselev V.I., Gusev N.I. Late Cambrian – Early Ordovician turbidites of Gorny Altai (Russia): Compositions, sources, deposition settings, and tectonic implications // Journal of Asian Earth Sciences. - 2018. - Vol.159. - P.209-232. - ISSN 1367-9120. - EISSN 1878-5786.
Идентиф-ры: DOI: 10.1016/j.jseaes.2017.07.046; РИНЦ: 35513557; SCOPUS: 2-s2.0-85026499734; WoS: 000436213700016;
Реферат: eng: The Cambrian-Ordovician transition was the time of several key events in the history of Central Asia. They were the accretion of Mariana-type island arc systems to the Siberian continent, the related large-scale orogeny and intrusions of basaltic and granitic magma and the formation of a huge turbidite basin commensurate with the Bengal Gulf basin in the western part of the Central Asian orogenic belt (CAOB). The structure of the basin, as well as the sources and environments of deposition remain open to discussion. This paper presents new major- and trace-element data on Late-Cambrian-Early Ordovician turbidites from different parts of the Russian Altai and a synthesis of Nd isotope composition and ages of detrital zircons. The turbidites share chemical similarity with material shed from weathered continental arcs. Broad variations of CIA (39–73) and ICV (0.63–1.66) signatures in sandstones suggest origin from diverse sources and absence of significant sorting. Trace elements vary considerably and have generally similar patterns in rocks from different terranes. On the other hand, there are at least two provinces according to Nd isotope composition and age of detrital zircons. Samples from eastern Russian Altai contain only Phanerozoic zircons and have Nd isotope ratios similar to those in Early Cambrian island arcs (εNdt + 4.4… + 5.4; TNd(DM)-2-st = 0.8–0.9 Ga). Samples from central, western, and southern parts of Russian Altai contain Precambrian zircons (some as old as Late Archean) and have a less radiogenic Nd composition (εNdt up to -3.6; TNd(DM)-2-st up to 1.5 Ga). The chemical signatures of Late Cambrian to Early Ordovician turbidites indicate a provenance chemically more mature than the island arc rocks, and the presence of zircons with 510–490 Ma ages disproves their genetic relation with island arcs. The turbidite basin formed simultaneously with peaks of granitic and alkali-basaltic magmatism in the western Central Asian orogen and resulted from interplay of plate tectonic and plume tectonic processes. © 2017 Elsevier Ltd
Ключевые слова: Altay [Russian Federation]; zircon; turbidite; tectonic setting; sediment chemistry; provenance; point source; Ordovician; isotopic composition; detrital deposit; deposition; chemical composition; Cambrian; Turbidites; Tectonic settings; Russian Altai; Provenance; Geochemistry; Detrital zircons geochronology; geochronology; Russian Federation;
Издано: 2018
Физ. хар-ка: с.209-232
Цитирование: 1. Berzin, N.A., Coleman, R.G., Dobretsov, N.L., Zonenshain, L.P., Xiao, X., Chang, E.Z., Geodynamic map of the western part of the Paleo-Asian ocean. Russ. Geol. Geophys. 35 (1994), 5–22.
2. Bhatia, M.R., Plate tectonics and geochemical composition of sandstones. J. Geol. 91 (1983), 611–627.
3. Bhatia, M.R., Crook, K.A.W., Trace element characteristics of graywackes and tectonic discrimination of sedimentary basin. Contrib. Mineral. Petrol. 92 (1986), 181–193.
4. Blatt, H., Middleton, G., Murray, R., Origin of Sedimentary Rocks. 1972, Prentice-Hall Inc., New Jersey, 634.
5. Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P., (Ed.), Rare earth element geochemistry. Elsevier Science Publishing Company, Amsterdam, pp. 63–114.
6. Buslov, M.M., Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults. Russ. Geol. Geophys. 52 (2011), 52–71.
7. Buslov, M.M., Watanabe, T., Saphonova, I.Yu., Iwata, K., Travin, A., Akiyama, M.A., Vendian-Cambrian island arc system of the Siberian continent in Gorny Altay. Gondwana Res. 5 (2002), 781–800.
8. Buslov, M.M., Saphonova, I.Yu., Watanabe, T., Obut, O.T., Fujiwara, Y., Iwata, K., Semakov, N.N., Sugai, Y., Smirnova, L.V., Kazansky, A.Yu., Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci. J. 5 (2001), 203–224.
9. Buslov, M.M., Watanabe, T., Intrasubduction collision and its role in the evolution of an accretionary wedge: the Kurai zone of Gorny Altai (Central Asia). Russ. Geol. Geophys. 37 (1996), 82–93.
10. Buslov, M.M., Watanabe, T., Smirnova, L.V., Fujiwara, Y., Iwata, K., De Grave, J., Semakov, N.N., Travin, A.V., Kir'ynova, A.P., Kokh, D.A., Role of strike-slip faulting in Late Paleozoic-Early Mesozoic tectonics and geodynamics of the Altai-Sayan and East Kazakhstan regions. Russ. Geol. Geophys. 44 (2003), 49–75.
11. Buslov, M.M., Sennikov, N.V., Iwata, K., Zybin, V.A., Obut, O.T., Gusev, N.I., Shokalsky, S.P., New data on the structure and age of olistostromal and sand-silty rocks masses of the GornyAltai series in the southeast of the Gorny Altai Anui-Chuya zone. Russ. Geol. Geophys. 39 (1998), 789–798.
12. Buslov, M.M., Geng, H., Travin, A.V., Otgonbaator, D., Kulikova, A.V., Ming, Chen., Stijn, G., Semakov, N.N., Rubanova, E.S., Abildaeva, M.A., Voitishek, A.E., Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russ. Geol. Geophys. 54 (2013), 1250–1271.
13. Cai, K.D., Sun, M., Yuan, C., Long, X.P., Xiao, W.J., Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: a review. Russ. Geol. Geophys. 52 (2011), 1585–1599.
14. Cai, K., Sun, M., Buslov, M.M., Jahn, B.-m., Xiao, W., Long, X., Chen, H., Wan, B., Chen, M., Rubanova, E.S., Kulikova, A.V., Voytishek, E.E., Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB). Tectonophysics 674 (2016), 182–194.
15. Chen, M., Sun, M., Cai, K.D., Buslov, M.M., Zhao, G.C., Rubanova, E.S., Geochemical study of the Cambrian-Ordovician meta-sedimentary rocks from the northern Altai-Mongolian terrane, northwestern Central Asian Orogenic Belt: Implications on the provenance and tectonic setting. J. Asian Earth Sci. 96 (2014), 69–83.
16. Chen, M., Sun, M., Cai, K., Buslov, M.M., Zhao, G., Jiang, Y., Rubanova, E.S., Kulikova, A.V., Voytishek, E.E., The early Paleozoic tectonic evolution of the Russian Altai: Implications from geochemical and detrital zircon U-Pb and Hf isotopic studies of meta-sedimentary complexes in the Charysh–Terekta–Ulagan–Sayan suture zone. Gondwana Res. 34 (2016), 1–15.
17. Chen, M., Sun, M., Cai, K., Buslov, M.M., Zhao, G., Rubanova, E.S., Voytishek, E.E., Detrital zircon record of the early Paleozoic meta-sedimentary rocks in Russian Altai: implications on their provenance and the tectonic nature of the Altai-Mongolian terrane. Lithos 233 (2015), 209–222.
18. Chen, M., Sun, M., Buslov, M.M., Cai, K., Zhao, G., Zheng, J., Rubanova, E.S., Voytishek, E.E., Neoproterozoic-middle Paleozoic tectono-magmatic evolution of the Gorny Altai terrane, northwest of the Central Asian Orogenic Belt: constraints from detrital zircon U-Pb and Hf-isotope studies. Lithos 233 (2015), 223–236.
19. Coleman, R.G., Continental growth of northwest China. Tectonics 8 (1989), 621–635.
20. Cox, R., Lowe, D.R., Cullers, R.L., The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta 59 (1995), 2919–2940.
21. Cullers, R.L., Chaudhuri, S., Kilbane, N., Koch, R., Rare earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the USA. Geochim. Cosmochim. Acta 43 (1979), 1285–1302.
22. Dobretsov, N.L., Buslov, M.M., Yu, U., Fragments of oceanic islands in accretion–collision areas of Gorny Altai and Salair, southern Siberia, Russia: early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time. J. Asian Earth Sci. 23 (2004), 673–690.
23. Dobretsov, N.L., Buslov, M.M., Late Cambrian-Ordovician tectonics and geodynamics of the Central Asia. Russ. Geol. Geophys. 48 (2007), 71–82.
24. Dobretsov, N.L., Buslov, M.M., Vernikovsky, V.A., Neoproterosoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia. Gondwana Res. 6 (2003), 143–159.
25. Dobretsov, N.L., Evolution of structures of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian Fold Belt (Paleo-Asian ocean). Russ. Geol. Geophys. 44 (2003), 5–27.
26. Dobretsov, N.L., Early Paleozoic tectonics and geodynamics of Central Asia: role of mantle plumes. Russ. Geol. Geophys. 52 (2011), 1539–1552.
27. Dobretsov, N.L., Buslov, M.M., Uchio, Yu., Fragment of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia: early stages of continental crustal grow of the Siberian continent in Vendian-Early Cambrian time. J. Asian Earth Sci. 23 (2004), 673–690.
28. Demoux, A., Kröner, A., Badarch, G., Ping, J., Tomurhuu, D., Wingate, M.T.D., Zircon ages from the Baydrag Block and the Bayankhongor ophiolite zone: time constraints on Late Neoproterozoic to Cambrian subduction- and accretion-related magmatism in Central Mongolia. J. Geol. 117 (2009), 377–397.
29. Dobretsov, N.L., Berzin, N.A., Buslov, M.M., Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 37 (1995), 335–360.
30. Dobretsov, N.L., Simonov, V.A., Buslov, M.M., Kotlyarov, A.V., Magmatism and geodynamics of the Paleoasian ocean at the Vendian– Cambrian stage of its evolution. Russ. Geol. Geophys. 46 (2005), 933–951.
31. Donskaya, T.V., Gladkochub, D.P., Fedorovsky, V.S., Mazukabzov, A.M., Cho, M., Cheong, W., Kim, J., Synmetamorphic granitoids (∼490 Ma) as accretion indicators in the evolution of the Ol'khon terrane (western Cisbaikalia). Russ. Geol. Geophys. 54 (2013), 1195–1204.
32. Gibsher, A.S., Esin, S.V., Izokh, A.E., Kireev, A.D., Petrova, T.V., Cambrian diopside-bearing basalts of the Cheposh zone in Gorny Altai: A model for fractionation of hybrid magmas in intermediate magmatic chambers. Russ. Geol. Geophys. 38 (1997), 1760–1772.
33. Gladkochub, D.P., Stanevich, A.M., Mazukabzov, A.M., Donskaya, T.V., Pisarevsky, S.A., Nikoll, G., Motova, Z.L., Kornilova, T.A., Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton. Russ. Geol. Geophys. 54 (2013), 1150–1163.
34. Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Izmer, A., Vandoorne, W., Ryabinin, A., Van den haute, P., Vanhaecke, F., Elburg, M.A., Formation and Paleozoic evolution of the Gorny–Altai–Altai–Mongolia suture zone (South Siberia): Zircon U/Pb constraints on the igneous record. Gondwana Res. 20 (2011), 465–484.
35. Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Safonova, I.Y., Detrital zircon provenance of early Paleozoic sediments at the southwestern margin of the Siberian Craton: insights from U-Pb geochronology. J. Asian Earth Sci. 82 (2014), 115–123.
36. Golozubov, V.V., Kruk, N.N., Kiselyov, V.I., Rudnev, S.N., Kasatkin, S.A., Kruk, E.A., First Evidence for the Middle Triassic Volcanism in South Primorye. Russ. J. Pacific Geol. 11 (2017), 110–122.
37. Gusev, N.I., 2013. Metamorphic complexes of the Gorny Altai. LAP LAMBERT Academic Publishing, 80 p.
38. Gusev, N.I., Shokalsky, S.P., The age of metamorphic complexes in southeastern Gorny Altai. Prirodnye Resursy Gornogo Altaya 1 (2010), 72–80 (in Russian).
39. Herron, M.M., Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Petrol. 58 (1988), 820–829.
40. Izokh, A.E., Vishnevskii, A.V., Polyakov, G.V., Kalugin, V.M., Oyunchimeg, T., Shelepaev, R.A., Egorova, V.V., The Ureg Nuur Pt-bearing volcanoplutonic picrite-basalt association in the Mongolian Altay as evidence for a Cambrian-Ordovician Large Igneous Province. Russ. Geol. Geophys. 51 (2010), 521–533.
41. Jiang, Y., Sun, M., Zhao, G., Yuan, C., Xiao, W., Xia, X., Long, X., Wu, F., Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia. Precambr. Res. 189 (2011), 140–154.
42. Khain, E.V., Bibikova, E.V., Krцner, A., Zhuravlev, D.Z., Sklyarov, E.V., Fedotova, A.A., Kravchenko-Berezhnoy, I.R., The most ancient ophiolite of the CentralAsian fold belt: U-Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 199 (2002), 311–325.
43. Kozakov, I.K., Kotov, A.B., Salnikova, E.B., Kovach, V.P., Natman, A., Bibikova, E.V., Kirnozova, T.I., Todt, W., Kröner, A., Yakovleva, S.Z., Lebedev, V.I., Sugorakova, A.M., Timing of the structural evolution of metamorphic rocks in the Tuva-Mongolian Massif. Geotectonics 35 (2001), 165–184.
44. Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D.V., Hoffmann, J.E., Wong, J., Sun, M., Cai, K.D., Wang, T., Tong, Y., Wilde, S.A., Degtyarev, K.E., Rytsk, E.Y., Reassessment of continental growth during the accretionary history of the central Asian orogenic belt. Gondwana Res. 25 (2014), 103–125.
45. Kruk, N.N., Vladimirov, A.G., Babin, G.A., Shokalsky, S.P., Sennikov, N.V., Rudnev, S.N., Volkova, N.I., Kovach, V.P., Serov, P.A., Continental crust of the Gorny Altai: nature and composition of protoliths. Russ. Geol. Geophys. 51 (2010), 431–446.
46. Kruk, N.N., Rudnev, S.N., Vladimirov, A.G., Shokalsky, S.P., Kovach, V.P., Serov, P.A., Volkova, N.I., Early-Middle Paleozoic granitoids in Gorny Altai, Russia: Implications for continental crust history and magma sources. J. Asian Earth Sci. 42 (2011), 928–948.
47. Kruk, N.N., Volkova, N.I., Kuibida, Ya.V., Gusev, N.I., Demonterova, E.I., The nature of metamorphic complexes in Gorny Altai. Litosfera 2 (2013), 20–44 (in Russian).
48. Kruk, N.N., Continental crust of Gorny Altai: stages of formation and evolution; indicative role of granitoids. Russ. Geol. Geophys. 56 (2015), 1097–1113.
49. Kruk, N.N., Gavryushkina, O.A., Rudnev, S.N., Shokalsky, S.P., Vasyukova, E.A., Kotov, A.B., Sal'nikova, E.B., Travin, A.V., Kovach, V.P., Kruk, E.A., Petrology and age of granitoids of the Aturkol Massif, Gorny Altai: Contribution in the problem of formation of intraplate granitoids. Petrology 25 (2017), 318–337.
50. Krupchatnikov, V.I., Vrublevskii, V.V., Gertner, I.F., Krivchikov, V.A., OIB-type basalts of the Irbistu River basin (Southeast Mountain Altai): Evidence for the HIMU component in the magmatic source. Transactions (Doklady) of the Russian Academy of Sciences. Earth Sci. Sect. 439 (2011), 665–668.
51. Kuzmichev, A.B., Bibikova, E.V., Zhuravlev, D.Z., Neoproterozoic (∼800 Ma) orogeny in the Tuva-Mongolian massif (Siberia): island arc-continent collision at the northeast Rodinia margin. Precambr. Res. 110 (2001), 109–126.
52. Kuzmichev, A.B., Kröner, A., Hegner, E., Dunyi, L., Yusheng, W., The Shishkhid ophiolite, northern Mongolia: A key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambr. Res. 138 (2005), 125–150.
53. Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambr. Res. 160 (2008), 179–210.
54. Long, X., Min, M., Yuan, C., Xiao, W., Cai, K., Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sed. Geol. 208 (2008), 88–100.
55. Long, X.P., Yuan, C., Sun, M., Xiao, W.J., Zhao, G.C., Wang, Y.J., Cai, K.D., Detrital zircon ages and Hf isotopes of the early Paleozoic Flysch sequence in the Chinese Altai, NW China: New constraints on depositional age, provenance and tectonic evolution. Tectonophysics 480 (2010), 213–231.
56. McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 284 (1993), 21–40.
57. Mossakovsky, A.A., Ruzhentsev, S.V., Samygin, S.G., Kheraskova, T.N., Central Asian fold belt: geodynamic evolution and history of formation. Geotektonika 6 (1993), 3–33 (in Russian).
58. Nesbitt, H.W., Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299 (1982), 715–717.
59. Nikolaeva, I.V., Palesskii, S.V., Koz'menko, O.A., Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma–mass spectrometry (ICP-MS). Geochem. Int. 46 (2008), 1016–1022.
60. Nokleberg, W.J., Badarch, G., Berzin, N.A., Diggles, M.F., Hwang, D.H., Khanchuk, A.I., Miller, R.J., Naumova, V.V., Obolenskiy, A.A., Ogasawara, M., Parfenov, L.M., Prokopiev, A.V., Rodionov, S.M., Yan, H., Northeast asia geodynamics, mineral deposit location, and metallogenic belt maps, stratigraphic columns, descriptions of map units, and descriptions of metallogenic belts. USGS Open-File Report, 2004 2004–1252.
61. Noskov, Yu.S., 2007. Conglomerates with Pebble of Gorny Altai Igneous Rocks [in Russian]. SNIIGGiMS, Novosibirsk, 168 p.
62. Nozhkin, A.D., Bayanova, T.B., Turkina, O.M., Travin, A.V., Dmitrieva, N.V., Early Paleozoic granitoid magmatism and metamorphism on the Derba microcontinent, eastern Sayan region: New isotope-geochronological data. Transactions (Doklady) of the Russian academy of sciences. Earth Sci. Sect. 404 (2005), 1084–1089.
63. Plotnikov, A.V., Bibikova, E.V., Titov, A.V., Kruk, N.N., Gracheva, T.V., The age of Kyanite-sillimanite metamorphism of the south-Chuya complex, Gorny Altai: U-Pb isotopic dating of zircon. Geochem. Int. 40 (2002), 521–530.
64. Plotnikov, A.V., Kruk, N.N., Vladimirov, A.G., Kovach, V.P., Zhuravlev, D.Z., Moroz, E.N., Sm–Nd isotope systematics of metamorphic rocks in the western Altai-Sayan fold belt. Transactions (Doklady) of the Russian academy of sciences. Earth Sci. Sect. 388 (2003), 63–67.
65. Roser, B.P., Korsch, R.J., Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol. 94 (1986), 635–650.
66. Rudnev, S.N., Vladimirov, A.G., Ponomarchuk, V.A., Kruk, N.N., Babin, G.A., Borisov, S.M., Early Paleozoic granitoid batholites of the Altai-Sayan folded region (lateral–temporal zoning and sources). Transactions (Doklady) of the Russian academy of sciences. Earth Sci. Sect. 396 (2004), 492–495.
67. Rudnev, S.N., Early Paleozoic Cranitoid Magmatism in the Alti-Sayan Folded Area and in the Lake Zone in Western Mongolia. (in Russian), 2013, Publishing House of SB RAS, Novosibirsk, 295.
68. Safonova, I.Y., Buslov, M.M., Iwata, K., Kokh, D.A., Fragments of vendian-early carboniferous oceanic crust of the Paleo-Asian ocean in foldbelts of the Altai-Sayan Region of Central Asia: geochemistry, biostratigraphy and structural setting. Gondwana Res. 7 (2004), 771–790.
69. Safonova, I.Y., Buslov, M.M., Simonov, V.A., Izokh, A.E., Komiya, T., Kurganskaya, E.V., Ohno, T., Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun’ accretionary complex of Gorny Altai (southwestern Siberia). Russ. Geol. Geophys. 52 (2011), 421–442.
70. Safonova, I.Y., Sennikov, N., Komiya, T., Bychkova, Y., Kurganskaya, E., Geochemical diversity in oceanic basalts hosted by the Zasur'ya accretionary complex, NW Russian Altai, Central Asia: implications from trace elements and Nd isotopes. J. Asian Earth Sci. 42 (2011), 191–207.
71. Safonova, I., Kotlyarov, A., Krivonogov, S., Xiao, W., Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Res., 2017, 10.1016/j.gr.2017.04.005.
72. Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Asia. Nature 364 (1993), 299–307.
73. Shokalsky, S.P., Babin, G.A., Vladimirov, A.G., Borisov, S.M., Gusev, N.I., Tokarev, V.N., Zybin, V.A., Dubsky, V.S., Murzin, O.V., Krivchikov, V.A., Kruk, N.N., Rudnev, S.N., Fedoseev, G.S., Titov, A.V., Sergeev, V.P., Likhachev, N.N., Mamlin, A.N., Kotelnikov, E.I., Kuznetsov, S.A., Zeyfert, L.L., Yashin, V.D., Noskov, Yu.S., Uvarov, A.N., Fedak, S.I., Gusev, A.I., Vystavnoi, S.A., 2000. Correlation of Magmatic and Metamorphic Complexes in the Western Part of the Altai-Sayan Fold Belt. Publishing House of SB RAS, Department ‘‘Geo’’ Novosibirsk, 188 p. (in Russian).
74. Sun, M., Yuan, C., Xiao, W., Long, X., Xia, X., Zhao, G., Lin, S., Wu, F., Kröner, A., Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Paleozoic. Chem. Geol. 247 (2008), 352–383.
75. Taylor, S.R., McLennan, S.M., The continental crust: Its composition and evolution. 1985, Blackwell, London, 312.
76. Vernikovsky, V.A., Vernikovskaya, A.E., Tectonics and evolution of granitoid magmatism in the Yenisei Ridge. Russ. Geol. Geophys. 47 (2006), 32–50.
77. Vladimirov, A.G., Gibsher, A.S., Izokh, A.E., Rudnev, S.N., Early-Paleozoic granitoid batholiths of Central Asia: Scales, sources and geodynamic environments of formation. Transactions (Doklady) of the Russian Academy of Sciences. Earth Sci. Sect. 369 (1999), 795–798.
78. Vladimirov, A.G., Kozlov, S.M., Shokalsky, S.P., Khalilov, V.A., Rudnev, S.N., Kruk, N.N., Vystavnoi, S.A., Borisov, S.M., Berezikov, Yu.K., Metsner, A.N., Babin, G.A., Mamlin, A.N., Murzin, O.M., Nazarov, G.V., Makarov, V.A., The basic boundaries of granitoid magmatism in Kuznetsk Alatau, Altai and Kalba (according to data of U-Pb isotope dating). Russ. Geol. Geophys. 42 (2001), 1149–1170.
79. Vladimirov, A.G., Izokh, A.E., Polyakov, G.V., Babin, G.A., Mekhonoshin, A.S., Kruk, N.N., Khlestov, V.V., Khromykh, S.V., Travin, A.V., Yudin, D.S., Shelepaev, R.A., Karmysheva, I.V., Mikheev, E.I., Gabbro-granite intrusive series and their indicator importance for geodynamic reconstructions. Petrology 21 (2013), 158–180.
80. Vladimirov, A.G., Kruk, N.N., Rudnev, S.N., Khromykh, S.V., Geodynamics and granitoid magmatism of collision orogens. Russ. Geol. Geophys. 44:12 (2003), 1321–1338.
81. Volkova, N.I., Sklyarov, E.V., High-pressure complexes of central asian fold belt: geologic setting, geochemistry, and geodynamic implications. Russ. Geol. Geophys. 48 (2007), 83–90.
82. Vrublevsky, V.V., Gertner, I.F., Vladimirov, A.G., Rudnev, S.N., Borisov, S.M., Levchenkov, O.A., Voitenko, D.N., Geochronological boundaries and geodynamic interpretation of alkaline-mafic magmatism in Kuznetsk Alatau. Transactions (Doklady) of the Russian Academy of Sciences. Earth Sci. Sect. 398 (2004), 990–994.
83. Vrublevsky, V.V., Krupchatnikov, V.I., Gertner, I.F., Composition and isotopic evolution of potassic volcanic rocks from the southeastern Gorny Altai. Transactions (Doklady) of the Russian Academy of Sciences. Earth Sci. Sect. 416 (2007), 1090–1095.
84. Wang, T., Zheng, Y.D., Gehrels, G.E., Mu, Z., Geochronological evidence for existence of South Mongolian microcontinent—a zircon U-Pb age of granitoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex. Chin. Sci. Bull. 46 (2001), 2005–2008.
85. Wang, Y., Long, X., Wilde, S.A., Xu, H., Sun, M., Xiao, W., Yuan, C., Cai, K., Provenance of Early Paleozoic metasediments in the central Chinese Altai: implications for tectonic affinity of the Altai-Mongolia terrane in the Central Asian Orogenic Belt. Lithos 210–211 (2014), 57–68.
86. Wilhem, C., Windley, B.F., Stampfli, G.M., The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth Sci. Rev. 113 (2012), 303–341.
87. Windley, B.F., Kröner, A., Guo, J., Qu, G., Li, Y., Zhang, C., Neoproterozoic to paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. J. Geol. 110 (2002), 719–739.
88. Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G., Tectonic models for accretion of the central asian orogenic belt. J. Geol. Soc., London 164 (2007), 31–47.
89. Xiao, W.J., Windley, B.F., Badarch, G., Sun, S., Li, J.L., Qin, K.Z., Wang, Z.H., Paleozoic accretionary and convergent tectonics of the southern Altaids: implication for the lateral growth of Central Asia. J. Geol. Soc., London 161 (2004), 339–342.
90. Xiao, W.J., Windley, B.F., Yuan, C., Sun, M., Han, C.M., Lin, S.F., Chen, H.L., Yan, Q.R., Liu, D.Y., Qin, K.Z., Li, J.L., Sun, S., Paleozoic multiple subduction-accretion processes of the southern Altaids. Am. J. Sci. 309 (2009), 221–270.
91. Xiao, W.J., Huang, B.C., Han, C.M., Sun, S., Li, J.L., A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 18 (2010), 253–273.
92. Xiao, W.J., Han, C.M., Yuan, C., Sun, M., Lin, S.F., Chen, H.L., Li, Z.L., Li, J.L., Sun, S., Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. J. Asian Earth Sci. 32 (2008), 102–117.
93. Yakubchuk, A., Architecture and mineral deposits settings of the Altaid orogenic collage: a revised model. J. Asian Earth Sci. 23 (2004), 761–779.
94. Yarmolyuk, V.V., Kovalenko, V.I., Deep geodynamics and mantle plumes: Their role in the formation of the central Asian fold belt. Petrology 11 (2003), 504–531.
95. Yarmolyuk, V.V., Kovalenko, V.I., Kuz'min, M.I., North Asian superplume activity in the Phanerozoic: magmatism and geodynamics. Geotectonics 34 (2000), 343–366.
96. Yudovich, Y.E., Merts, A.V., Ketris, M.P., Petrochemical diagnosis of meta-arkoses and meta-rhyolites on the near-polar Urals. Transactions (Doklady) of the Russian academy of sciences. Earth Sci. Sect. 351 (1996), 383–386.
97. Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M., Geology of the USSR: a plate tectonic synthesis. Am. Geophys. Union. Geodyn. Ser. Monograph, 1990, 242 21.