Инд. авторы: Ma X., Cai K., Zhao T., Bao Z., Wang X., Chen M., Buslov M.M.
Заглавие: Devonian volcanic rocks of the southern Chinese Altai, NW China: Petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis
Библ. ссылка: Ma X., Cai K., Zhao T., Bao Z., Wang X., Chen M., Buslov M.M. Devonian volcanic rocks of the southern Chinese Altai, NW China: Petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis // Journal of Asian Earth Sciences. - 2018. - Vol.160. - P.78-94. - ISSN 1367-9120. - EISSN 1878-5786.
Идентиф-ры: DOI: 10.1016/j.jseaes.2018.04.017; РИНЦ: 35497147; SCOPUS: 2-s2.0-85045840453; WoS: 000434751500007;
Реферат: eng: Ridge–trench interaction is a common tectonic process of the present-day Pacific Rim accretionary orogenic belts, and this process may facilitate “slab-window” magmatism that can produce significant thermal anomalies and geochemically unusual magmatic events. However, ridge-trench interaction has rarely been well-documented in the ancient geologic record, leading to grossly underestimation of this process in tectonic syntheses of plate margins. The Chinese Altai was inferred to have undergone ridge subduction in the Devonian and a slab-window model is proposed to interpret its high-temperature metamorphism and geochemically unique magmatic rocks, which can serve as an excellent and unique place to refine the tectonic evolution associated with ridge subduction in an ancient accretionary orogeny. For this purpose, we carried out geochemical and geochronological studies on Devonian basaltic rocks in this region. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating results yield an age of 376.2 ± 2.4 Ma, suggesting an eruption at the time of Late Devonian. Geochemically, the samples in this study have variable SiO2 (43.3–58.3 wt%), low K2O (0.02–0.07 wt%) and total alkaline contents (2.16–5.41 wt%), as well as Fe2O3 T/MgO ratios, showing typical tholeiitic affinity. On the other hand, the basaltic rocks display MORB-like REE patterns ((La/Yb)N = 0.90–2.57) and (Ga/Yb)N = 0.97–1.28), and have moderate positive εNd(t) values (+4.4 to +5.4), which collectively suggest a derivation from a mixing source comprising MORB-like mantle of a mature back-arc basin and subordinate arc mantle wedge. These basaltic rocks are characterized by Low La/Yb (1.26–3.69), Dy/Yb (1.51–1.77) and Sm/Yb (0.83–1.32) ratios, consistent with magmas derived from low degree (∼10%) partial melting of the spinel lherzolite source at a quite shallow mantle depth. Considering the distinctive petrogenesis of the basaltic rocks in this region, the Late Devonian basalts in the southern Chinese Altai is suggested to have witnessed the propagating process of slab-window magmatism that was induced by ridge subduction in a nascent rifting stage of a back-arc basin. © 2018 Elsevier Ltd
Ключевые слова: volcanic rock; tectonic setting; subduction zone; slab; petrogenesis; orogeny; magmatism; accretionary prism; Slab-window; Ridge-trench interaction; Ridge subduction; Chinese Altai; CAOB; Devonian; Altai Mountains;
Издано: 2018
Физ. хар-ка: с.78-94
Цитирование: 1. Abratis, M., 1998. Geochemical variations in magmatic rocks from southern Costa Rica as a consequence of Cocos Ridge subduction and uplift of the Cordillera de Talamanca. Germany.
2. Aguillónrobles, A., Calmus, T., Benoit, M., Bellon, H., Maury, R.C., Cotten, J., Bourgois, J., Michaud, F., Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below southern Baja California?. Geology 29:6 (2001), 531–534.
3. Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., Mitchell, J.G., Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geoth. Res. 102:1–2 (2000), 67–95.
4. Belousova, E., Griffin, W., O'Reilly, S.Y., Fisher, N., Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Miner. Petrol. 143:5 (2002), 602–622.
5. Benoit, M., Aguillon-Robles, A., Calmus, T., Maury, R.C., Bellon, H., Cotten, J., Bourgois, J., Michaud, F., Geochemical diversity of Late Miocene volcanism in southern Baja California, Mexico: implication of mantle and crustal sources during the opening of an asthenospheric window. J. Geol. 110:6 (2002), 627–648.
6. Berzin, N.A., Coleman, R.G., Dobretsov, N.L., Zonenshain, L.P., Xuchang, X., Chang, E.Z., Geodynamic map of the western part of the Paleoasian ocean. Russ. Geol. Geophys. 35:7 (1994), 5–22.
7. BGMRX (Bureau of Geology andMineral Resources of Xinjiang Uygur Autonomous Region, 1993. Regional Geology of Xinjiang Uygur Autonomous Region. People's Republic of China, Ministry of Geology and Mineral Resources. Geological Memoirs, Series 1, No. 32. Geological Publishing House, Beijing, pp. 206. (in Chinese).
8. Briggs, S.M., Yin, A., Manning, C.E., Chen, Z.L., Wang, X.F., Grove, M., Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. Geol. Soc. Am. Bull. 119:7–8 (2007), 944–960.
9. Brown, M., Ridge-trench interactions and high-T-low-P metamorphism, with particular reference to the Cretaceous evolution of the Japanese Islands. Geol. Soc. Lond. Spl. Publ. 138:1 (1998), 137–169.
10. Buslov, M.M., Saphonova, I.Y., Watanabe, T., Obut, O.T., Fujiwara, Y., Iwata, K., Semakov, N.N., Sugai, Y., Smirnova, L.V., Kazansky, A.Y., Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci. J. 5:3 (2001), 203–224.
11. Buslov, M.M., Watanabe, T., Smirnova, L.V., Fujiwara, I., Iwata, K., Grave, I.D., Semakov, N.N., Travin, A.V., Kir'Yanova, A.P., Kokh, D.A., Role of strike-slip faults in Late Paleozoic-Early Mesozoic tectonics and geodynamics of the Altai-Sayan and East Kazakhstan folded zone. Geologiya I Geofizika 44:1–2 (2003), 49–75.
12. Buslov, M.M., Fujiwara, Y., Iwata, K., Semakov, N.N., Late Paleozoic-Early Mesozoic Geodynamics of Central Asia. Gondwana Res. 7:3 (2004), 791–808.
13. Buslov, M.M., Watanabe, T., Fujiwara, Y., Iwata, K., Smirnova, L.V., Safonova, I.Y., Semakov, N.N., Kiryanova, A.P., Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. J. Asian Earth Sci. 23:5 (2004), 655–671.
14. Buslov, M.M., Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults. Russ. Geol. Geophys. 52:1 (2011), 52–71.
15. Buslov, M.M., Geng, H., Travin, A.V., Otgonbaatar, D., Kulikova, A.V., Ming, C., Stijn, G., Semakov, N.N., Rubanova, E.S., Abildaeva, M.A., Voitishek, E.E., Trofimova, D.A., Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russ. Geol. Geophys. 54:10 (2013), 1250–1271.
16. Cai, K.D., Sun, M., Yuan, C., Zhao, G.C., Xiao, W.J., Long, X.P., Wu, F.Y., Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Res. 18:4 (2010), 638–652.
17. Cai, K.D., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X., Wu, F., Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. J. Asian Earth Sci. 42:5 (2011), 949–968.
18. Cai, K.D., Sun, M., Yuan, C., Long, X.P., Xiao, W.J., Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: a review. Russ. Geol. Geophys. 52:12 (2011), 1619–1633.
19. Cai, K.D., Sun, M., Yuan, C., Zhao, G.C., Xiao, W.J., Long, X.P., Wu, F.Y., Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai. NW China. Lithos. 127:1–2 (2011), 261–281.
20. Cai, K.D., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X., Keketuohai mafic–ultramafic complex in the Chinese Altai, NW China: petrogenesis and geodynamic significance. Chem. Geol. 294–295 (2012), 26–41.
21. Cai, K.D., Sun, M., Yuan, C., Xiao, W.J., Zhao, G.C., Long, X.P., Wu, F.Y., Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: implications for geodynamic change of the accretionary orogenic belt. Gondwana Res. 22:2 (2012), 681–698.
22. Castillo, P.R., Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico. Geol. Soc. Am. Bull. 120:3–4 (2008), 451–462.
23. Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., Accretionary orogens through Earth history. Geol. Soc., Lond., Spl. Publ. 318:1 (2009), 1–36.
24. Chadwick, J., Perfit, M., Mcinnes, B., Kamenov, G., Plank, T., Jonasson, I., Chadwick, C., Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth Planet. Sci. Lett. 279:3–4 (2009), 293–302.
25. Chai, F.M., Mao, J., Dong, L., Yang, F., Liu, F., Geng, X., Zhang, Z., Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang: Implications for the tectonic evolution and metallogeny. Gondwana Res. 16:2 (2009), 189–200.
26. Chai, F.M., Yang, F.Q., Liu, F., Geng, X., Zhang, Z., Chen, B., Geochronology and genesis of the meta-felsic volcanic rocks in the Kangbutiebao Formation from the Maizi Basin at the southern margin of the Altay, Xinjiang. Dizhi Kexue/Chin. J. Geol. 47:1 (2012), 221–239.
27. Chen, B., Jahn, B.M., Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications. Geol. Mag. 139:1 (2002), 1–13.
28. Cole, R.B., Basu, A.R., Middle tertiary volcanism during ridge-trench interactions in Western california. Science, 258(5083), 1992, 793.
29. Cole, R.B., Stewart, B.W., Continental margin volcanism at sites of spreading ridge subduction: examples from southern Alaska and western California. Tectonophysics 464:1 (2009), 118–136.
30. Cong, F., Tang, H., Yuping, S.U., Geochemistry and tectonic setting of Devonian rhyolites in southern Altay, Xinjiang, northwest China. Geotectonica Et Metallogenia 31:3 (2007), 359–364.
31. D'Orazio, M., Agostini, S., Innocenti, F., Haller, M.J., Manetti, P., Mazzarini, F., Slab window-related magmatism from southernmost South America: the Late Miocene mafic volcanics from the Estancia Glencross Area (∼52°S, Argentina–Chile). Lithos 57:2–3 (2001), 67–89.
32. Dickinson, W.R., Snyder, W.S., Geometry of subducted slabs related to San Andreas Transform. J. Geol. 87:6 (1979), 609–627.
33. Geng, H.Y., Sun, M., Yuan, C., Xiao, W., Xian, W., Zhao, G., Zhang, L., Wong, K., Wu, F., Geochemical, Sr–Nd and zircon U-Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction?. Chem. Geol. 266:3 (2009), 364–389.
34. Glorie, S., Grave, J.D., Buslov, M.M., Zhimulev, F.I., Izmer, A., Vandoorne, W., Ryabinin, A., Haute, P.V.D., Vanhaecke, F., Elburg, M.A., Formation and Palaeozoic evolution of the Gorny-Altai–Altai-Mongolia suture zone (South Siberia): Zircon U/Pb constraints on the igneous record. Gondwana Res. 20:2 (2011), 465–484.
35. Gorring, M., Singer, B., Gowers, J., Kay, S.M., Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: evidence for asthenosphere–lithosphere interactions during slab window magmatism. Chem. Geol. 193:3–4 (2003), 215–235.
36. Haase, K.M., Worthington, T.J., Stoffers, P., Garbe-Schönberg, D., Wright, I., Mantle dynamics, element recycling, and magma genesis beneath the Kermadec Arc-Havre Trough. Geochem. Geophys. Geosyst. 3:11 (2002), 1–22.
37. Haeussler, P.J., Bradley, D., Goldfarb, R., Snee, L., Taylor, C., Link between ridge subduction and gold mineralization in southern Alaska. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56:5–6 (1995), 845–857.
38. Hawkesworth, C.J., Gallagher, K., Hergt, J.M., McDermott, F., Mantle and slab contributions in ARC magmas. Annu. Rev. Earth Planet. Sci. 21:1 (1993), 175–204.
39. He, G.Q., Han, B., Yue, Y., Wang, J., Tectonic division and crustal evolution of Altay orogenic belt in China. Geosci. Xinjiang 2 (1990), 9–20.
40. He, G.Q., Li, M., Liu, D., Zhou, N., Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. 1994, Xinjiang People's Publishing House, Urumqi, 437.
41. He, Y.L., Sun, M., Cai, K.D., Xiao, W.J., Zhao, G.C., Long, X.P., Li, P.F., Petrogenesis of the Devonian high-Mg rock association and its tectonic implication for the Chinese Altai orogenic belt, NW China. J. Asian Earth Sci. 113 (2015), 61–74.
42. Jahn, B.M., Wu, F., Chen, B., 2000a. Granitoids_of_the_Central_Asian_Orogenic_Belt_and continental growth in the Phanerozoic. Earth Sciences.
43. Jahn, B.M., Wu, F., Chen, B., 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes.
44. Jiang, Y., Sun, M., Zhao, G., Yuan, C., Xiao, W., Xia, X., Long, X., Wu, F., The 390 Ma high-T metamorphic event in the Chinese Altai: a consequence of ridge-subduction?. Am. J. Sci. 310:10 (2010), 1421–1452.
45. Jiang, Y.D., Stipska, P., Sun, M., Schulmann, K., Zhang, J., Wu, Q.H., Long, X.P., Yuan, C., Racek, M., Zhao, G.C., Xiao, W.J., Juxtaposition of Barrovian and migmatite domains in the Chinese Altai: a result of crustal thickening followed by doming of partially molten lower crust. J. Metamorph. Geol. 33:1 (2015), 45–70.
46. Jiang, Y.D., Schulmann, K., Sun, M., Štípská P., Guy, A., Janoušek, V., Lexa, O., Yuan, C., Anatexis of accretionary wedge, Pacific-type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt. Tectonics 35:12 (2016), 3095–3118.
47. Jiang, Y.D., Schulmann, K., Kröner, A., Sun, M., Lexa, O., Janoušek, V., Buriánek, D., Yuan, C., Hanžl, P., Neoproterozoic-early paleozoic peri-pacific accretionary evolution of the Mongolian Collage System: insights from geochemical and U-Pb Zircon data from the Ordovician Sedimentary Wedge in the Mongolian Altai. Tectonics 36:11 (2017), 2305–2331.
48. Karsten, J.L., Klein, E.M., Sherman, S.B., Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: implications of modern ridge subduction systems for the Archean. Lithos 37:2 (1996), 143–161.
49. Kelemen, P.B., Hanghøj, K., Greene, A.R., One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treat. Geochem. 138 (2004), 1–70.
50. Kerr, A.C., Tarney, J., Kempton, P.D., Spadea, P., Nivia, A., Marriner, G.F., Duncan, R.A., Pervasive mantle plume head heterogeneity: Evidence from the late Cretaceous Caribbean-Colombian oceanic plateau. J. Geophys. Res. Solid Earth, 107(B7), 2002 ECV 2-1–ECV 2-13.
51. Kruk, N.N., Rudnev, S.N., Vladimirov, A.G., Shokalsky, S.P., Kovach, V.P., Serov, P.A., Volkova, N.I., Early-Middle Paleozoic granitoids in Gorny Altai, Russia: implications for continental crust history and magma sources. J. Asian Earth Sci. 42:5 (2011), 928–948.
52. Kruk, N.N., Continental crust of Gorny Altai: stages of formation and evolution; indicative role of granitoids. Russ. Geol. Geophys. 56:8 (2015), 1097–1113.
53. Lagabrielle, Y., Le Moigne, J., Maury, R., Cotten, J., Bourgois, J., Volcanic record of the subduction of an active spreading ridge, Taitao Peninsula (southern Chile). Geology 22:6 (1994), 515–518.
54. Li, H.Q., Chen, F.W., Isotopic Geochronology of Regional Mineralization in Xinjiang. 2004, Geological Publishing House, NW China, 19–58.
55. Li, X.H., Geochemistry of the Longsheng Ophiolite from the southern margin of Yangtze Craton, SE China. Geochem. J. 31:5 (1997), 323–337.
56. Li, X.H., Li, Z.X., Wingate, M.T., Chung, S., Liu, Y., Lin, G., Li, W., Geochemistry of the 755Ma Mundine Well dyke swarm, northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia?. Precambr. Res. 146:1 (2006), 1–15.
57. Li, X.H., Liu, Y., Li, Q., Guo, C.H., Chamberlain, K.R., Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem. Geophys. Geosyst., 10(4), 2009.
58. Li, X.H., Tang, G.Q., Gong, B., Yang, Y.H., Hou, K.J., Hu, Z.C., Li, Q., Liu, Y., Li, W., Qinghu zircon: a working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin. Sci. Bull. 58:36 (2013), 4647–4654.
59. Liang, X.R., Wei, G.J., Li, X.H., Liu, Y., Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica 32:1 (2003), 91–96.
60. Liu, W., Liu, L., Liu, X., Shang, H., Zhou, G., Age of the early devonian Kangbutiebao formation along the southern Altay Mountains and its northeastern extension. Acta Petrol. Sin. 26:2 (2010), 387–400.
61. Liu, W., Liu, X.j., Xiao, W.j., Massive granitoid production without massive continental crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zirconU-Pb age, Hf-Nd-Sr isotopes and geochemistry. Am. J. Sci. 312:6 (2012), 629–684.
62. Liu, Y., Liu, H.C., Li, X.H., Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica 25:6 (1996), 552–558.
63. Lomize, M.G., Luchitskaya, M.V., Subduction of spreading ridges as a factor in the evolution of continental margins. Geotectonics 46:1 (2012), 47–68.
64. Long, X.P., Sun, M., Yuan, C., Xiao, W.J., Lin, S., Wu, F., Xia, X., Cai, K., U-Pb and Hf isotopic study of zircons from metasedimentary rocks in the Chinese Altai: implications for Early Paleozoic tectonic evolution. Tectonics, 26(5), 2007.
65. Long, X.P., Sun, M., Yuan, C., Xiao, W.J., Cai, K., Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sed. Geol. 208:3–4 (2008), 88–100.
66. Long, X.P., Yuan, C., Sun, M., Xiao, W.J., Wang, Y.J., Cai, K.D., Xia, X.P., Xie, L.W., Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: new constrains on depositional age, provenance and tectonic evolution. Tectonophysics 480:1–4 (2010), 213–231.
67. Lou, F.S., Characteristics of Late Caledonian granites in the Nuerte area, Altay. Jiangxi Geol. 11 (1997), 60–66.
68. Ludwing, K., Isoplot/Ex version 3.00—A geochronology toolkit for Microsoft Excel, 2003, Berkeley Geochronol Center Spec Publ, 1–70.
69. Maruyama, S., Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Isl. Arc 6:1 (1997), 91–120.
70. McCrory, P.A., Wilson, D.S., Introduction to Special Issue on: interpreting the tectonic evolution of Pacific Rim margins using plate kinematics and slab-window volcanism. Tectonophysics 464:1-4 (2009), 3–9.
71. McCrory, P.A., Wilson, D.S., Stanley, R.G., Continuing evolution of the Pacific-Juan de Fuca-North America slab window system—A trench–ridge–transform example from the Pacific Rim. Tectonophysics 464:1–4 (2009), 30–42.
72. McKenzie, D., O'nions, R.K., Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 32:5 (1991), 1021–1091.
73. Meschede, M., A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol. 56:3 (1986), 207–218.
74. Miyashiro, A., Volcanic Rock Series in Island Arcs and Active Continental Margins, 1974, 321–355.
75. Murdie, R.E., Russo, R.M., Seismic anisotropy in the region of the Chile margin triple junction. J. S. Am. Earth Sci. 12:3 (1999), 261–270.
76. Niu, H.C., Sato, H., Zhang, H.X., Ito, J., Nagao, T., Yu, X.Y., Terada, K., Zhang, Q., Juxtaposition of adakite, boninite, high-TiO2 and low-TiO2 basalts in the Devonian southern Altay, Xinjiang, NW China. J. Asian Earth Sci. 28:4–6 (2006), 439–456.
77. Niu, H.C., Yu, X.Y., Xu, J.F., Late Paleozoic Volcanism and Associated Metallognesis in the Altay Area, Xinjiang. 2006, Geological Publishing House, Beijing, China.
78. Pearce, J.A., Stern, R.J., Bloomer, S.H., Fryer, P., Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem. Geophys. Geosyst. 6:7 (2005), 406–407.
79. Pearce, J.A., Cann, J.R., Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 19:2 (1973), 290–300.
80. Peters, T.J., Menzies, M., Thirlwall, M., Kyle, P.R., Zuni-Bandera volcanism, Rio Grande, USA – Melt formation in garnet- and spinel-facies mantle straddling the asthenosphere–lithosphere boundary. Lithos 102:1–2 (2008), 295–315.
81. Polat, A., Hofmann, A., Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambr. Res. 126:3 (2003), 197–218.
82. Qu, G.S., Zhang, J.J., Irtys structural zone [in Chinese]. Geosci. Xinjiang 3 (1991), 115–131.
83. Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust, pp. 1–51.
84. Russo, R.M., Vandecar, J.C., Comte, D., Mocanu, V.I., Gallego, A., Murdie, R.E., Subduction of the Chile Ridge: upper mantle structure and flow. Gsa Today, 2010, 4–10.
85. Santosh, M., Kusky, T., Origin of paired high pressure-ultrahigh-temperature orogens: a ridge subduction and slab window model. Terra Nova 22:1 (2010), 35–42.
86. Şengör, A., Natal'In, B., Burtman, V., Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:6435 (1993), 299–307.
87. Şengör, A.M.C., Natal'in, B.A., 1996. Paleotectonics of Asia: Fragments of a syn thesis.
88. Shaw, J.E., Baker, J.A., Menzies, M.A., Thirlwall, M.F., Ibrahim, K.M., Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): a mixed lithosphere-asthenosphere source activated by lithospheric extension. J. Petrol. 44:9 (2003), 1657–1679.
89. Sisson, V.B., Pavlis, T.L., Roeske, S.M., Thorkelson, D.J., 2003. Introduction: An overview of ridge-trench interactions in modern and ancient settings. In: Sisson, V.B., Roeske, S.M., Pavlis, T.L. (Eds.), Geology of a Transpressional Orogen Developed During Ridge–trench Interaction Along the North Pacific Margin: Geological society of America, special paper, vol. 371, pp. 1–18. Geology of, 371(1): 31-3.
90. Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S., Morris, G.A., Nasdala, L., Norberg, N., Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249:1 (2008), 1–35.
91. Stern, R.J., Subduction zones. Rev. Geophys., 40(4), 2002.
92. Sun, M., Long, X.P., Cai, K.D., Jiang, Y.D., Wang, B.Y., Yuan, C., Zhao, G.C., Xiao, W.J., Wu, F.Y., Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Sci. China, Ser. D Earth Sci. 52:9 (2009), 1345–1358.
93. Sun, M., Yuan, C., Xiao, W.J., Long, X.P., Xia, X.P., Zhao, G.C., Lin, S.F., Wu, F.Y., Kröner, A., Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chem. Geol. 247:3–4 (2008), 352–383.
94. Sun, S.S., McDonough, W.s., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc., Lond., Spl. Publ. 42:1 (1989), 313–345.
95. Taylor, S.R., McLennan, S.M., The geochemical evolution of the continental crust. Rev. Geophys. 33:2 (1995), 241–265.
96. Thorkelson, D.J., Subduction of diverging plates and the principles of slab window formation. Tectonophysics 255:1–2 (1996), 47–63.
97. Thorkelson, D.J., Taylor, R.P., Cordilleran slab windows. Geology 17:9 (1989), 833–836.
98. Wan, B., The Formation of VMS Deposits in the Process of Lateral Accretion in the Southern Altai: Geological, Geochemical Characteristics and Mineralization. 2009, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing.
99. Wan, B., Zhang, L.C., Xiang, P., The Ashele VMS-type Cu-Zn Deposit in Xinjiang, NW China Formed in a Rifted Arc Setting. Resour. Geol. 60:2 (2010), 150–164.
100. Wang, T., Hong, D.W., Jahn, B.M., Tong, Y., Wang, Y.B., Han, B.F., Wang, X.X., Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, northwest China: implications for the Tectonic evolution of an accretionary orogen. J. Geol. 114:6 (2006), 735–751.
101. Wang, T., Jahn, B.M., Kovach, V.P., Tong, Y., Hong, D.W., Han, B.F., Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 110:1–4 (2009), 359–372.
102. Wang, W., Wei, C.J., Wang, T., Lou, Y.X., Chu, H., Confirmation of pelitic granulite in the Altai orogen and its geological significance. Chin. Sci. Bull. 54:14 (2009), 2543–2548.
103. Wang, Y.J., Yuan, C., Long, X.P., Sun, M., Xiao, W.J., Zhao, G.C., Cai, K.D., Jiang, Y.D., Geochemistry, zircon U-Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai: petrogenesis and tectonic implications. J. Asian Earth Sci. 42:5 (2011), 969–985.
104. Wang, Z.H., Sun, S., Li, J.L., Hou, Q.L., Qin, K.Z., Xiao, W.J., Hao, J., Paleozoic tectonic evolution of the northern Xinjiang, China: geochemical and geochronological constraints from the ophiolites. Tectonics, 22(2), 2003 9/1-9/15.
105. Wei, C.J., Clarke, G., Tian, W., Qiu, L., Transition of metamorphic series from the Kyanite- to andalusite-types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations. Lithos 96:3 (2007), 353–374.
106. Wei, G.J., Liang, X.R., Li, X.H., Liu, Y., Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC-ICPMS. Geochimica 31:3 (2002), 295–305.
107. Wilson, D.S., McCrory, P.A., Stanley, R.G., Implications of volcanism in coastal California for the Neogene deformation history of western North America. Tectonics 24:3 (2005), 1–22.
108. Wilson, M., Igneous Petrogenesis. 1989, Chapman and Hall, London, 466.
109. Winchester, J.A., Floyd, P.A., Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20 (1977), 325–343.
110. Windley, B.F., Alexeiev, D., Xiao, W.J., Kröner, A., Badarch, G., Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 164:1 (2007), 31–47.
111. Windley, B.F., Kröner, A., Guo, J., Qu, G., Li, Y., Zhang, C., Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. J. Geol. 110:6 (2002), 719–737.
112. Wong, K., Sun, M., Zhao, G.C., Yuan, C., Xiao, W.J., Geochemical and geochronological studies of the Alegedayi Ophiolitic complex and its implication for the evolution of the Chinese Altai. Gondwana Res. 18:2–3 (2010), 438–454.
113. Wu, Y.F., Yang, F.Q., Liu, F., Geng, X., Li, Q., Zheng, J., Petrogenesis and tectonic settings of volcanic rocks of the Ashele Cu–Zn deposit in southern Altay, Xinjiang, Northwest China: Insights from zircon U-Pb geochronology, geochemistry and Sr–Nd isotopes. J. Asian Earth Sci. 112 (2015), 60–73.
114. Xiao, W.J., Windley, B.F., Sun, S., Li, J., Huang, B., Han, C., Yuan, C., Sun, M., Chen, H., A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 43:1 (2015), 477–507.
115. Xiao, W.J., Windley, B.F., Allen, M.B., Han, C., Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 23:4 (2013), 1316–1341.
116. Xiao, W.J., Huang, B.C., Han, C.M., Sun, S., Li, J.L., A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 18:2–3 (2010), 253–273.
117. Xiao, W.J., Kroner, A., Windley, B.F., Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. Int. J. Earth Sci. 98:6 (2009), 1185–1188.
118. Xiao, W.J., Windley, B.F., Yuan, C., Sun, M., Han, C.M., Lin, S.F., Chen, H.L., Yan, Q.R., Liu, D.Y., Qin, K.Z., Li, J.L., Sun, S., Paleozoic multiple subduction-accretion processes of the Southern Altaids. Am. J. Sci. 309:3 (2009), 221–270.
119. Xiao, W.J., Pirajno, F., Seltmann, R., Geodynamics and metallogeny of the Altaid orogen. J. Asian Earth Sci. 32:2–4 (2008), 77–81.
120. Xiao, W.J., Windley, B.F., Badarch, G., Sun, S., Li, J., Qin, K., Wang, Z., Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia. J. Geol. Soc. 161 (2004), 339–342.
121. Xiao, X.C., Tang, Y., Feng, Y., Zhu, B., Li, J., Zhao, M., Tectonic Evolution of Northern Xinjiang and its Adjacent Regions. 1992, Geol. Publ. House, Beijing, 104–121.
122. Xu, J.F., Castillo, P.R., Chen, F.R., Niu, H.C., Yu, X.Y., Zhen, Z.P., Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China: implications for backarc mantle evolution. Chem. Geol. 193:1 (2003), 137–154.
123. Xu, Y.G., Ma, J.L., Frey, F.A., Feigenson, M.D., Liu, J.-F., Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem. Geol. 224:4 (2005), 247–271.
124. Yang, F.Q., Geng, X.X., Wang, R., Zhang, Z.X., Guo, X.J., A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China. J. Asian Earth Sci., 2017.
125. Yang, F.Q., Liu, F., Li, Q., Geng, X.X., In situ LA–MC–ICP–MS U-Pb geochronology of igneous rocks in the Ashele Basin, Altay orogenic belt, northwest China: Constraints on the timing of polymetallic copper mineralization. J. Asian Earth Sci. 79 (2014), 477–496.
126. Yin, J.Y., Yuan, C., Sun, M., Long, X.P., Zhao, G.C., Wong, K.P., Geng, H.Y., Cai, K.D., Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications. Gondwana Res. 17:1 (2010), 145–152.
127. Yuan, C., Sun, M., Xiao, W.J., Li, X.H., Chen, H.L., Lin, S.F., Xia, X.P., Long, X.P., Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chem. Geol. 242:1–2 (2007), 22–39.
128. Zhang, H.X., Niu, H.C., Terada, K., Yu, X.Y., Sato, H., Ito, J., Zircon SHRIMP U-Pb dating on plagiogranite from Kuerti ophiolite in Altay, North Xinjiang. Chin. Sci. Bull. 48:20 (2003), 2231–2235.
129. Zhang, Z.M., Zhao, G.C., Santosh, M., Wang, J.L., Dong, X., Shen, K., Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Res. 17:4 (2010), 615–631.
130. Zhang, Z., Yan, S., Chen, B., Zhou, G., He, Y., Chai, F., He, L., Wan, Y., SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of east Jungaar, Xinjiang. Chin. Sci. Bull. 51:8 (2006), 952–962.
131. Zhao, J.H., Zhou, M.F., Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction-related metasomatism in the upper mantle. Precambr. Res. 152:1–2 (2007), 27–47.
132. Zhao, Z.H., Xiong, X.L., Wang, Q., Bai, Z.H., Qiao, Y.L., Late Paleozoic underplating in North Xinjiang: evidence from shoshonites and adakites. Gondwana Res. 16:2 (2009), 216–226.
133. Zheng, C.Q., Kato, T., Enami, M., Xu, X.C., CHIME monazite ages of metasediments from the Altai orogen in northwestern China: Devonian and Permian ages of metamorphism and their significance. Isl. Arc 16:4 (2007), 598–604.
134. Zhuang, Y.X., Tectonothermal Evolution in Space and Time and Orogenic Process of Altaide, China. 1994, Jilin Scienti?c and Technical Press, Changchun.
135. Zou, T.R., Chao, H.Z., Wu, B.Q., Orogenic and Anorogenic Granitoids in the Altay Mountains of Xinjiang and Their Discrimination Criteria. Acta Geol. Sin. 2:1 (1988), 45–64.