Инд. авторы: Safonov O.G., Reutsky V.N., Varlamov D.A., Yapaskurt V.O., Golunova M.A., Shcherbakov V.D., van Reenen D.D., Smit A.C., Butvina V.G.
Заглавие: Composition and source of fluids in high-temperature graphite-bearing granitoids associated with granulites: Examples from the Southern Marginal Zone, Limpopo Complex, South Africa
Библ. ссылка: Safonov O.G., Reutsky V.N., Varlamov D.A., Yapaskurt V.O., Golunova M.A., Shcherbakov V.D., van Reenen D.D., Smit A.C., Butvina V.G. Composition and source of fluids in high-temperature graphite-bearing granitoids associated with granulites: Examples from the Southern Marginal Zone, Limpopo Complex, South Africa // Gondwana Research. - 2018. - Vol.60. - P.129-152. - ISSN 1342-937X. - EISSN 1878-0571.
Идентиф-ры: DOI: 10.1016/j.gr.2018.04.009; РИНЦ: 35745788; SCOPUS: 2-s2.0-85048009260; WoS: 000454185000008;
Реферат: eng: P-T conditions, fluid regime and carbon isotope composition of graphite and fluid inclusions from garnet-sillimanite-bearing leucocratic tonalites, trondhjemites and granites associated with orthopyroxene-bearing granulite metapelites in the Southern Marginal Zone (SMZ) of the Limpopo Complex, South Africa, are presented in the paper. Re-integrated compositions of perthitic alkali feldspars and antiperthitic plagioclase, as well as P-T and T-XCO2 phase equilibria modeling using PERPLE_X software indicate that the granitoids began to crystallize at temperatures of 900–940 °C and pressures of 7–9 kbar, and were equilibrated with a fluid phase with XCO2 > 0.5–0.6 as is recorded in dense fluid inclusions in quartz. A small fraction of a saline fluid accumulated during cooling only. Average δ13CPDB values for graphite (−6.52 to −8.65‰) and fluid inclusions (−2.50 to −5.58‰) from the granitoids differ substantially from the values, which have been obtained in previous studies for graphite from the surrounding SMZ metapelites. Isotope data thus indicate that fluids associated with the granitoid magmas of the SMZ originated from a source unrelated to the host metapelites. In terms of the “heavy” isotope signatures of carbon, the granitoids might carry fluids, which have been produced during devolatilization of mafic rocks (amphibolites) interlayered with hydrothermal carbonate veins in the adjacent granite-greenstone successions of the Kaapvaal craton that have been buried underneath the SMZ granulites during their exhumation. The cratonic rock could serve as a source for the trondhjemite magmas intruding the SMZ granulites. In this scenario, the studied granitoids crystallized from these magmas variously contaminated by metapelitic material. Graphite precipitated via reduction of CO2-rich fluid as the result of dissolution of pyrrhotite-rich metapelites in the magmas. © 2018 International Association for Gondwana Research
Ключевые слова: Tonalite; Phase equilibria modeling; Orthopyroxene-bearing metapelite; Limpopo Complex; Granite; Fluids; Carbon isotopes; Graphite; Trondhjemite;
Издано: 2018
Физ. хар-ка: с.129-152
Цитирование: 1. Aranovich, L.Y., The role of brines in high-temperature metamorphism and granitization. Petrology 2 (2017), 486–497.
2. Aranovich, L.Y., Newton, R.C., H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium. Contributions to Mineralogy and Petrology 127 (1997), 261–271.
3. Aranovich, L.Y., Safonov, O.G., Halogens in high-grade metamorphism. Harlov, D.E., Aranovich, L.Y., (eds.) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, 2018, 713–757 (Chapter 11, Springer Geochemistry).
4. Baker, J., van Reenen, D.D., Van Schalkwyk, J.F., Newton, R.C., Constraints on the composition of fluids involved in retrograde anthophyllite formation in the Limpopo Belt, South Africa. Precambrian Research 55 (1992), 327–336.
5. Barker, W.W., Parks, T.C., The thermodynamic properties of pyrrhotite and pyrite: a re-evaluation. Geochimica et Cosmochimica Acta 50 (1986), 2185–2194.
6. Barton, J.M., Van Reenen, D.D., When was the Limpopo orogeny?. Precambrian Research 55 (1992), 7–16.
7. Barton, J.M., Doig, R., Smith, C.B., Bohlender, F., van Reenen, D.D., Isotopic and REE characteristics of the intrusive charnoenderbite and enderbite geographically associated with the Matok Pluton, Limpopo belt, southern Africa. Precambrian Research 55 (1992), 451–567.
8. Beard, J.S., Lofgren, G.E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology 32 (1991), 365–401.
9. Belyanin, G.A., Rajesh, H.M., Van Reenen, D.D., Mouri, H., Corundum + orthopyroxene ± spinel intergrowths in an ultrahigh-temperature Al-Mg granulite from the Southern Marginal Zone, Limpopo Belt, South Africa. American Mineralogist 95 (2010), 196–199.
10. Belyanin, G.A., Rajesh, H.M., Sajeev, K., van Reenen, D.D., Ultrahigh-temperature metamorphism from an unusual corundum+orthopyroxene intergrowth bearing Al–Mg granulite from the Southern Marginal Zone, Limpopo Complex, South Africa. Contributions to Mineralogy and Petrology 164 (2012), 457–475.
11. Belyanin, G.A., Kramers, J.D., Vorster, C., Knoper, M.W., The timing of successive fluid events in the Southern Marginal Zone of the Limpopo Complex, South Africa: constraints from 40Ar–39Ar geochronology. Precambrian Research 254 (2014), 169–193.
12. Belyanin, G., van Reenen, D.D., Safonov, O.G., Response to comments by Nicoli et al. on the paper by Belyanin et al. (2012). Contributions to Mineralogy and Petrology 167 (2014), 1–5.
13. Berman, R.G., Internally-consistent thermodynamic data for stoichiometric minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology 29 (1988), 445–522.
14. Berman, R.G., WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geological Survey of Canada Open File 5462, 2007.
15. Berman, R.G., Aranovich, L.Ya, Optimized standard state and solution properties of minerals I model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contributions to Mineralogy and Petrology 126 (1996), 1–24.
16. Beyssac, O., Goffé B., Chopin, C., Rouzaud, J.N., Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology 20 (2002), 859–871.
17. Blenkinsop, T.G., Archean magmatic granulites, diapirism, and Proterozoic reworking in the Northern Marginal Zone of the Limpopo Belt. Geological Society of America Memoirs 207 (2011), 245–267.
18. Bottinga, Y., Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochimica et Cosmochimica Acta 33 (1969), 49–64.
19. Brandt, S., Klemd, R., Li, Q., Kröner, A., Brandl, G., Fischer, A., Bobek, P., Zhou, T., Pressure-temperature evolution during two granulite-facies metamorphic events (2.62 and 2.02 Ga) in rocks from the Central Zone of the Limpopo Belt, South Africa. Precambrian Research, 2018, 10.1016/j.precamres.2018.03.002 (in press).
20. Burrows, D.R., Wood, P.C., Spooner, E.T.C., Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits. Nature 321 (1986), 851–854.
21. Cesare, B., Meli, S., Nodari, L., Russo, U., Fe3+ reduction during biotite melting in graphitic metapelites: another origin of CO2 in granulites. Contributions to Mineralogy and Petrology 149 (2005), 129–140.
22. Clemens, J.D., Yearron, L.M., Stevens, G., Barberton (South Africa) TTG magmas: geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting. Precambrian Research 151 (2006), 53–78.
23. Clemens, J.D., Stevens, G., Farina, F., The enigmatic source of I-type granites: the peritectic connexion. Lithos 126 (2011), 174–181.
24. Connolly, J.A.D., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236 (2005), 524–541.
25. De Beer, J.H., Stettler, E.H., The deep structure of the Limpopo Belt from geophysical studies. Precambrian Research 55 (1992), 173–186.
26. De Ronde, C.E.J., Spooner, E.T.C., de Wit, M.J., Bray, C.J., Shear zone-related, Au quartz vein deposits in the Barberton greenstone belt, South Africa; field and petrographic characteristics, fluid properties, and light stable isotope geochemistry. Economic Geology 87 (1992), 366–402.
27. van den Berg, R., Huizenga, J., Fluids in granulites of the Southern Marginal Zone of the Limpopo belt, South Africa. Contributions to Mineralogy and Petrology 141 (2001), 529–545.
28. van den Kerkhof, A.M., Thiéry, R., Carbonic inclusions. Lithos 55 (2001), 49–68.
29. Du Toit, M.C., Van Reenen, D.D., Roering, C., Some aspects of the geology, structure and metamorphism of the Southern Marginal Zone of the Limpopo Metamorphic Complex. Special Publication of the Geological Society of South Africa, 8, 1983, 121–142.
30. Dubinina, E.O., Aranovich, L.Y., van Reenen, D.D., Avdeenko, A.S., Varlamov, D.A., Shaposhnikov, V.V., Kurdyukov, E.B., Involvement of fluids in the metamorphic processes within different zones of the Southern Marginal Zone of the Limpopo complex, South Africa: an oxygen isotope perspective. Precambrian Research 256 (2015), 48–61.
31. Duke, E.F., Rumble, D., Textural and isotopic variations in graphite from plutonic rocks, south-central New Hampshire. Contributions to Mineralogy and Petrology 93 (1986), 409–419.
32. Elkins, L.T., Grove, T.L., Ternary feldspar experiments and thermodynamic models. American Mineralogist 75 (1990), 544–559.
33. Farquhar, J., Chacko, T., Isotopic evidence for involvement of CO2-bearing magmas in granulite formation. Nature 354 (1991), 60–63.
34. Faure, K., Harris, C., Oxygen and carbon isotope geochemistry of the 3.2 Ga Kaap Valley tonalite, Barberton greenstone belt, South Africa. Precambrian Research 52 (1991), 301–319.
35. Ferry, J.M., Petrology of graphitic sulfide-rich schists from south-central Maine: an example of desulfidation during prograde regional metamorphism. American Mineralogist 66 (1981), 908–930.
36. Frezzotti, M.L., Tecce, F., Casagli, A., Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration 112 (2012), 1–20.
37. Friedman, I., O'Neil, J.R., Data of geochemistry. Fleisher, M., (eds.) Compilation of Stable Isotope Fractionation Factors of Geochemical Interest, United States Geological Survey, Professional Paper 440-kk, 6h ed., 1977.
38. Frost, B.R., Frost, C.D., CO2, melts and granulite metamorphism. Nature 327 (1987), 503–506.
39. Frost, B.R., Frost, C.D., Touret, J.L., Magmas as a source of heat and fluids in granulite metamorphism. Fluid Movements—Element Transport and the Composition of the Deep Crust, 1989, Springer Netherlands, 1–18.
40. Fuhrman, M.L., Lindsley, D.H., Ternary-feldspar modeling and thermometry. American Mineralogist 73 (1988), 201–215.
41. Gardien, V., Thompson, A.B., Ulmer, P., Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole. Journal of Petrology 41 (2000), 651–666.
42. Giorgetti, G., Frezzotti, M.L., Palmeri, R., Burke, E.A.J., Role of fluids in migmatites: CO2-H2O fluid inclusions in leucosomes from the Deep Freeze Range migmatites (Terra Nova Bay, Antarctica). Journal of Metamorphic Geology 14 (1996), 307–317.
43. Glassley, W., Fluid evolution and graphite genesis in the deep continental crust. Nature 295 (1982), 229–231.
44. Groves, D.I., Golding, S.D., Rock, N.M.S., Barley, M.E., McNaughton, N.J., Archean carbon reservoirs and their relevance to fluid source for gold deposits. Nature 331 (1988), 254–257.
45. Hall, A.J., Pyrite-pyrrhotine redox reactions in nature. Mineralogical Magazine 50 (1986), 223–229.
46. Holland, T.J.B., Powell, R., An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology 29 (2011), 333–383.
47. Hollister, L.S., On the origin of CO2-rich fluid inclusions in migmatites. Journal of Metamorphic Geology 6 (1988), 467–474.
48. Hollister, L.S., Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation. Journal of Structural Geology 12 (1990), 895–901.
49. Holloway, J.R., Fluids in evolution of granitic magmas: consequence of finite CO2 solubility. Geological Society of America Bulletin 87 (1976), 1513–1518.
50. Huizenga, J.M., Thermodynamic modelling of a cooling C–O–H fluid–graphite system: implications for hydrothermal graphite precipitation. Mineralium Deposita 46 (2011), 23–33.
51. Huizenga, J.M., Touret, J.L., Granulites, CO2 and graphite. Gondwana Research 22 (2012), 799–809.
52. Huizenga, J.M., Van Reenen, D., Touret, J.L., Fluid-rock interaction in retrograde granulites of the Southern Marginal Zone, Limpopo high grade terrain, South Africa. Geoscience Frontiers 5 (2014), 673–682.
53. Jackson, D.H., Mattey, D.P., Harris, N.B.W., Carbon isotope compositions of fluid inclusions in charnockites from southern India. Nature 333 (1988), 167–170.
54. Jarosewich, E., Nelen, J.A., Norberg, J.A., Reference samples for electron microprobe analysis. Geostandards Newsletter 4 (1980), 43–47.
55. Javoy, M., Pineau, F., Delorme, H., Carbon and nitrogen isotopes in the mantle. Chemical Geology 57 (1986), 41–62.
56. Kanaris-Sotiriou, R., Graphite-bearing peraluminous dacites from the Erlend volcanic complex, Faeroe-Shetland Basin, North Atlantic. Mineralogical Magazine 61 (1997), 175–184.
57. Kerrich, R., Archean gold: relation to granulite formation or felsic intrusions?. Geology 17 (1989), 1011–1015.
58. Kerrich, R., Carbon-isotope systematics of Archean Au–Ag vein deposits in the Superior Province. Canadian Journal of Earth Sciences 27 (1990), 40–56.
59. Kerrich, R., Fryer, B.J., King, R.W., Willmore, L.M., Hees, E.V., Crustal outgassing and LILE enrichment in major lithosphere structures, Archean Abitibi greenstone belt: evidence on the source reservoir from strontium and carbon isotope tracers. Contributions to Mineralogy and Petrology 97 (1987), 156–168.
60. Koester, E., Pawley, A.R., Fernandes, L.A.D., Porcher, C.C., Soliani, E. Jr., Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil. Journal of Petrology 39 (2002), 689–710.
61. Koizumi, T., Tsunogae, T., van Reenen, D.D., Fluid evolution of partially retrogressed pelitic granulite from the Southern Marginal Zone of the Neoarchean Limpopo Complex, South Africa: evidence from phase equilibrium modelling. Precambrian Research 253 (2014), 146–156.
62. Kramers, J.D., Zeh, A., A review of Sm-Nd and Lu-Hf isotope studies in the Limpopo Complex and adjoining cratonic areas, and their bearing on models of crustal evolution and tectonism. Geological Society of America Memoirs 207 (2011), 163–188.
63. Kramers, J.D., McCourt, S., Roering, C., Smit, C.A., van Reenen, D.D., Tectonic models proposed for the Limpopo Complex: mutual compatibilities and constraints. Geological Society of America Memoirs 207 (2011), 311–324.
64. Kramers, J.D., Henzen, M., Steidle, L., Greenstone belts at the northernmost edge of the Kaapvaal Craton: timing of tectonic events and a possible crustal fluid source. Precambrian Research 253 (2014), 96–113.
65. Kreissig, K., Nagler, T.F., Kramers, J.D., Van Reenen, D.D., Smit, C.A., An isotopic and geochemical study of the northern Kaapvaal Craton and the Southern Marginal Zone of the Limpopo Belt: are they juxtaposed terranes?. Lithos 50 (2000), 1–25.
66. Kreissig, K., Holzer, L., Frei, R., Geochronology of the Hout River Shear Zone and the metamorphism in the Southern Marginal Zone of the Limpopo Belt, southern Africa. Precambrian Research 109 (2001), 145–173.
67. Kröner, A., Brandl, G., Brandt, S., Klemd, R., Xie, H., Geochronological evidence for Archaean and Palaeoproterozoic polymetamorphism in the Central Zone of the Limpopo Belt, South Africa. Precambrian Research 310 (2018), 320–347.
68. Kullerud, G., Yoder, H.S., Pyrite stability relations in the Fe-S system. Economic Geology 54 (1959), 533–572.
69. Kyser, T.K., Stable isotope variations in the mantle. Valley, J.W., Taylor, H.P., O'Niel, J.R., (eds.) Stable Isotopes in High Temperature Geological Processes, 1986, Book-Crafters, Chelsea, MI, 141–164.
70. Lamb, W.M., Valley, J.W., COH fluid calculations and granulite genesis. The Deep Proterozoic Crust in the North Atlantic Provinces, 1985, Springer Netherlands, 119–131.
71. Lamb, W.M., Valley, J.W., Brown, P.E., Post-metamorphic CO2-rich fluid inclusions in granulites. Contributions to Mineralogy and Petrology 96 (1987), 485–495.
72. Laurent, O., Zeh, A., A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: example from the Pietersburg block (South Africa). Earth and Planetary Science Letters 430 (2015), 326–338.
73. Laurent, O., Paquette, J.L., Martin, H., Doucelance, R., Moyen, J.F., LA-ICP-MS dating of zircons from Meso-and Neoarchean granitoids of the Pietersburg block (South Africa): crustal evolution at the northern margin of the Kaapvaal craton. Precambrian Research 230 (2013), 209–226.
74. Laurent, O., Rapopo, M., Stevens, G., Moyen, J.F., Martin, H., Doucelance, R., Bosq, C., Contrasting petrogenesis of Mg-K and Fe-K granitoids and implications for post-collisional magmatism: case study from the Late-Archean Matok pluton (Pietersburg block, South Africa). Lithos 196-197 (2014), 131–149.
75. Le Breton, N., Thompson, A.B., Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology 99 (1988), 226–237.
76. Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., Sörensen, H., Wooley, A.R., Igneous rocks – a classification and glossary of terms. Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks, 2nd edition, 2002, Cambridge University Press, Cambridge.
77. Lowenstern, J.B., Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita 36 (2001), 490–502.
78. Luque, F.J., Barrenechea, J.F., Rodas, M., Graphite geothermometry in low and high temperature regimes: two case studies. Geological Magazine 130 (1993), 501–511.
79. Luque, F.J., Crespo-Feo, E., Barrenechea, J.F., Ortega, L., Carbon isotopes of graphite: implications on fluid history. Geoscience Frontiers 3 (2012), 197–207.
80. McLelland, J., Hunt, W.M., Hansen, E.C., The relationship between metamorphic charnockite and marble near Speculator, central Adirondack Mountains, New York. Journal of Geology 96 (1988), 455–467.
81. Mohr, D.W., Newton, R.C., Kyanite-staurolite metamorphism in sulfidic schists of the Anakeesta formation, Great Smoky Mountains, North Carolina. American Journal of Science 283 (1983), 97–134.
82. Moyen, J.-F., Stevens, G., Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. Geophysical Monograph Series, 164, 2006, 149–175.
83. Munoz, J.L., Swenson, A., Chloride-hydroxyl exchange in biotite and estimation of relative HC1/HF activities in hydrothermal fluids. Economic Geology 76 (1981), 2212–2221.
84. Newton, R.C., Smith, J.C., Windley, B.F., Carbonic metamorphism, granulites and crustal growth. Nature 288 (1980), 45–50.
85. Newton, R.C., Touret, J.L., Aranovich, L.Y., Fluids and H2O activity at the onset of granulite facies metamorphism. Precambrian Research 253 (2014), 17–25.
86. Ni, H., Keppler, H., Carbon in silicate melts. Reviews in Mineralogy and Geochemistry 75 (2013), 251–287.
87. Nicoli, G., Stevens, G., Buick, I.S., Moyen, J.-F., A comment on ultrahigh-temperature metamorphism from an unusual corundum+orthopyroxene intergrowth bearing Al–Mg granulite from the Southern Marginal Zone, Limpopo Complex, South Africa by Belyanin et al. Contributions to Mineralogy and Petrology, 167, 2014, 1022.
88. Nicoli, G., Stevens, G., Moyen, J.-F., Frei, D., Rapid evolution from sediment to anatectic granulite in an Archean continental collision zone: the example of the Bandelierkop Formation metapelites, South Marginal Zone, Limpopo Belt, South Africa. Journal of Metamorphic Geology 33 (2015), 177–202.
89. Pasteris, J.D., In situ analysis in geological thin-sections by laser Raman microprobe spectroscopy: a cautionary note. Applied Spectroscopy 43 (1989), 567–570.
90. Patino Douce, A.E., Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25 (1997), 743–746.
91. Patiño Douce, A.E., Beard, J.S., Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 36 (1995), 707–738.
92. Patiño Douce, A.E., Harris, N., Experimental constraints on Himalayan anatexis. Journal of Petrology 39 (1998), 689–710.
93. Patiño Douce, A.E., Johnston, D.A., Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy Petrology 107 (1991), 202–218.
94. Perchuk, L.L., Gerya, T.V., van Reenen, D.D., Safonov, O.G., Smit, C.A., The Limpopo Metamorphic Belt, South Africa: 2. Decompression and cooling regimes of granulites and adjacent rocks of the Kaapvaal Craton. Petrology 4 (1996), 571–599.
95. Perchuk, L.L., Gerya, T.V., van Reenen, D.D., Smit, C.A., Krotov, A.V., Safonov, O.G., Comparative petrology and metamorphic evolution of the Limpopo (South Africa) and Lapland (Fennoscandia) high grade terrains. Mineralogy and Petrology 69 (2000), 69–107.
96. Perchuk, L.L., Van Reenen, D.D., Varlamov, D.A., Van Kal, S.M., Boshoff, R., P–T record of two high-grade metamorphic events in the Central Zone of the Limpopo Complex, South Africa. Lithos 103 (2008), 70–105.
97. Pickering, G.M., Johnston, D.A., Fluid-absent melting behavior of a two-mica metapelite: experimental constraints on the origin of Black Hills granite. Journal of Petrology 39 (1998), 1787–1804.
98. Polyakov, V.B., Kharlashina, N.N., The use of heat capacity data to calculate carbon isotope fractionation between graphite, diamond, and carbon dioxide: a new approach. Geochimica et Cosmochimica Acta 59 (1995), 2561–2572.
99. Poulson, S.R., Ohmoto, H., An evaluation of the solubility of sulfide sulfur in silicate melts from experimental data and natural samples. Chemical Geology 85 (1990), 57–75.
100. Powell, R., Will, T.M., Phillips, G.N., Metamorphism in Archaean greenstone belts: calculated fluid compositions and implications for gold mineralization. Journal of Metamorphic Geology 9 (1991), 141–150.
101. Putnis, A., Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine 66 (2002), 689–708.
102. Radhika, U.P., Santosh, M., Shear-zone hosted graphite in southern Kerala, India: implications for CO2 infiltration. Journal of Southeast Asian Earth Sciences 14 (1996), 265–273.
103. Rajesh, H.M., Santosh, M., Wan, D., Liu, S., Liu, S.J., Belyanin, G.A., Ultrahigh temperature granulites and magnesian charnockites: evidence for Neoarchean accretion along the northern margin of the Kaapvaal craton. Precambrian Research 246 (2014), 150–159.
104. Rapp, R.P., Watson, E.B., Miller, C.F., Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 51 (1991), 1–25.
105. van Reenen, D.D., Cordierite + garnet + hypersthene + biotite-bearing assemblages as a function of changing metamorphic conditions in the Southern Marginal Zone of the Limpopo metamorphic complex, South Africa. Geological Society of South Africa Special Publication 8 (1983), 143–167.
106. van Reenen, D.D., Hydration of cordierite and hypersthene and a description of the retrograde orthoamphibole isograd in the Limpopo Belt, South Africa. American Mineralogist 71 (1986), 900–915.
107. van Reenen, D.D., Hollister, L.S., Fluid inclusions in hydrated granulite facies rocks, southern marginal zone of the Limpopo Belt, South Africa. Geochimica et Cosmochimica Acta 52 (1988), 1057–1064.
108. van Reenen, D.D., Barton, J.M., Roering, C., Smit, C.A., van Schalkwyk, J.F., Deep crustal response to continental collision: the Limpopo belt of southern Africa. Geology 15 (1987), 11–14.
109. van Reenen, D.D., Pretorius, A.I., Roering, C., Characterization of fluids associated with gold mineralization and with regional high-temperature retrogression of granulites in the Limpopo belt, South Africa. Geochimica et Cosmochimica Acta 58 (1994), 1147–1159.
110. van Reenen, D.D., Smit, C.A., Perchuk, L.L., Roering, C., Boshoff, R., Thrust exhumation of the Neoarchean ultrahigh-temperature Southern Marginal Zone, Limpopo Complex: convergence of decompression-cooling paths in the hanging wall and prograde P-T paths in the footwall. Geological Society of America Memoirs 207 (2011), 189–212.
111. van Reenen, D.D., Huizenga, J.-M., Smit, C.A., Roering, C., Fluid-rock interaction during high-grade metamorphism: instructive examples from the Southern Marginal Zone of the Limpopo Complex, South Africa. Precambrian Research 253 (2014), 63–80.
112. Retief, E.A., Compston, W., Armstrong, R.A., Williams, I.S., Characteristics and preliminary U–Pb ages of zircons from Limpopo Belt lithologies. Extended Abstracts, Limpopo Workshop, 1990, Rand Afrikaans University, Johannesburg, South Africa, 95–99.
113. Reutsky, V.N., Borzdov, Y.M., Palyanov, Y.N., Effect of diamond growth rate on carbon isotope fractionation in Fe–Ni–C system. Diamond and Related Materials 21 (2012), 7–10.
114. Rodas, M., Luque, F.J., Barrenechea, J.F., Fernández-Caliani, J.C., Miras, A., Fernández-Rodríguez, C., Graphite occurrences in the low-pressure/high-temperature metamorphic belt of the Sierra de Aracena (southern Iberian Massif). Mineralogical Magazine 64 (2000), 801–814.
115. Roering, C., Van Reenen, D.D., Smit, C.A., Tectonic model for the evolution of the Limpopo Belt. Precambrian Research 55 (1992), 539–552.
116. Rushmer, T., Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology 107 (1991), 41–59.
117. Safonov, O.G., Tatarinova, D.S., van Reenen, D.D., Golunova, M.A., Yapaskurt, V.O., Fluid-assisted interaction of peraluminous metapelites with trondhjemitic magma within the Petronella shear-zone, Limpopo Complex, South Africa. Precambrian Research 253 (2014), 114–145.
118. Santosh, M., Omori, S., CO2 flushing: a plate tectonic perspective. Gondwana Research 13 (2008), 86–102.
119. Santosh, M., Wada, H., Microscale isotopic zonation in graphite crystals: evidence for channelled CO2 influx in granulites. Earth and Planetary Science Letters 119 (1993), 19–26.
120. Santosh, M., Jackson, D.H., Harris, N.B.W., Mattey, D.P., Carbonic fluid inclusions in South Indian granulites: evidence for entrapment during charnockite formation. Contributions to Mineralogy and Petrology 108 (1991), 318–330.
121. Sarangi, S., Sarkar, A., Srinivasan, R., Patel, S.C., Carbon isotope studies of auriferous quartz carbonate veins from two orogenic gold deposits from the Neoarchean Chitradurga schist belt, Dharwar craton, India: evidence for mantle/magmatic source of auriferous fluid. Journal of Asian Earth Sciences 52 (2012), 1–11.
122. Satish-Kumar, M., Graphite-bearing CO2-fluid inclusions in granulites: insights on graphite precipitation and carbon isotope evolution. Geochimica et Cosmochimica Acta 69 (2005), 3841–3856.
123. Satish-Kumar, M., Santosh, M., A petrological and fluid inclusion study of calc-silicate–charnockite associations from southern Kerala, India: implications for CO2 influx. Geological Magazine 135 (1998), 27–45.
124. Satish-Kumar, M., Yurimoto, H., Itoh, S., Cesare, B., Carbon isotope anatomy of a single graphite crystal in a metapelitic migmatite revealed by high-spatial resolution SIMS analysis. Contributions to Mineralogy and Petrology 162 (2011), 821–834.
125. van Schalkwyk, J.F., van Reenen, D.D., High-temperature hydration of ultramafic granulites from the Southern Marginal Zone of the Limpopo Belt by infiltration of CO2-rich fluid. Precambrian Research 55 (1992), 337–352.
126. Scheele, N., Hoefs, J., Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contributions to Mineralogy and Petrology 112 (1992), 35–45.
127. Schürmann, L.W., Ward, J.H.W., Horstmann, U.E., Jordaan, L.J., Eaton, B., Carbonate dykes associated with Archean lode-Au mineralisation, Barberton greenstone belt, South Africa. Journal of African Earth Sciences 30 (2000), 249–266.
128. Shengelia, D.M., Akhvlediani, R.A., Ketskhoveli, D.N., The graphite geothermometer. Doklady Akademii Nauk SSSR 235 (1979), 132–134.
129. Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology 148 (2005), 635–661.
130. Skjerlie, K.P., Johnston, A.D., Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites. Journal of Petrology 34 (1993), 785–815.
131. Skjerlie, K.P., Patino Douce, A., Anatexis of interlayered amphibolite and pelite at 10 kbar: effect of diffusion of major components on phase relations and melt fraction. Contributions to Mineralogy and Petrology 122 (1995), 62–78.
132. Smit, C.A., van Reenen, D.D., Deep crustal shear zone, high-grade tectonites, and associated metasomatic alteration in the Limpopo Belt, South Africa: implications for deep crustal processes. Journal of Geology 106 (1997), 37–57.
133. Smit, C.A., Roering, C., van Reenen, D.D., The structural framework of the Southern Marginal Zone of the Limpopo Belt, South Africa. Precambrian Research 55 (1992), 51–67.
134. Smit, C.A., Van Reenen, D.D., Gerya, T.V., Perchuk, L.L., P-T conditions of decompression of the Limpopo high-grade terrain: record from shear zones. Journal of Metamorphic Geology 19 (2001), 249–268.
135. Smit, C.A., van Reenen, D.D., Roering, C., Boshoff, R., Perchuk, L.L., Neoarchean to Paleoproterozoic evolution of the polymetamorphic Central Zone of the Limpopo Complex. Geological Society of America Memoirs 207 (2011), 213–244.
136. Smit, C.A., van Reenen, D.D., Roering, C., Role of fluids in the exhumation of the Southern Marginal Zone of the Limpopo Complex, South Africa. Precambrian Research 253 (2014), 81–95.
137. Steele-MacInnis, M., Bodnar, R.J., Naden, J., Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochimica et Cosmochimica Acta 75 (2011), 21–40.
138. Sterner, S.M., Pitzer, K.S., An equation of state for carbon dioxide valid from zero to extreme pressures. Contributions to Mineralogy and Petrology 117 (1994), 362–374.
139. Stevens, G., Vapor-absent Melting in Metapelite During the 2700 Ma Limpopo Metamorphic Event in South Africa: Further Evidence of the Granite-Granulite Link. (Master Degree Dissertation), 1991, Rand Africaans University, Johannesburg.
140. Stevens, G., Melting, carbonic fluids and water recycling in the deep crust: an example from the Limpopo Belt, South Africa. Journal of Metamorphic Geology 15 (1997), 141–154.
141. Stevens, G., Clemens, J.D., Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary?. Chemical Geology 108 (1993), 1–17.
142. Stevens, G., van Reenen, D.D., Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt, South Africa. Precambrian Research 55 (1992), 303–319.
143. Taylor, J., Nicoli, G., Stevens, G., Frei, D., Moyen, J.-F., The process that control leucosome composition in metasedimentary granulites: perspectives from the Southern Marginal Zone. Limpopo Belt, South Africa. Journal of Metamorphic Geology 32 (2014), 713–742.
144. Todd, C.S., Evans, B.W., Limited fluid-rock interaction at marble-gneiss contacts during Cretaceous granulite-facies metamorphism, Seward Peninsula, Alaska. Contributions to Mineralogy and Petrology 114 (1993), 27–41.
145. Touret, J.L.R., Le faciès granulite en Norvège méridionale. II Les inclusions fluides. Lithos 4 (1971), 423–436.
146. Tracy, R.J., Robinson, P., Silicate-sulfide-oxide-fluid reactions in granulite-grade pelitic rocks, central Massachusetts. American Journal of Science 288 (1988), 45–74.
147. Tsunogae, T., Miyano, T., van Reenen, D.D., Smit, C.A., Ultrahigh-temperature metamorphism of the southern marginal zone of the Archean Limpopo Belt, South Africa. Journal of Mineralogical and Petrological Sciences 99 (2004), 213–224.
148. Tuinstra, F., Koenig, J.L., Raman spectrum of graphite. The Journal of Chemical Physics 53 (1970), 1126–1130.
149. Tuttle, O.F., Bowen, N.L., Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geological Society of America Memoirs 74 (1958), 1–146.
150. Valley, J.W., Stable isotope geochemistry of metamorphic rocks. Reviews in Mineralogy, 16, 1986, Mineralogical Society of America, 445–490.
151. Vennemann, T.W., Smith, H.S., Stable isotope profile across the orthoamphibole isograde in the Southern Marginal Zone of the Limpopo Belt, South Africa. Precambrian Research 55 (1992), 365–397.
152. Vielzeuf, D., Holloway, J.R., Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contributions to Mineralogy and Petrology 98 (1988), 257–276.
153. Wada, H., Tomita, T., Matsuura, K., Iuchi, K., Ito, M., Morikiyo, T., Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphism, Japan. Contributions to Mineralogy and Petrology 118 (1995), 217–228.
154. Watkins, J.M., Clemens, J.D., Treloar, P.J., Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contributions to Mineralogy and Petrology 154 (2007), 91–110.
155. Watson, E.B., Brenan, J.M., Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids, their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth and Planetary Science Letters 85 (1987), 497–515.
156. White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., Green, E.C.R., New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology 32 (2014), 261–286.
157. Whitney, D.L., Origin of CO2-rich fluid inclusions in leucosomes from the Skagit migmatites, North Cascades, Washington, USA. Journal of Metamorphic Geology 10 (1992), 715–725.
158. Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals. American Mineralogist 95 (2010), 185–187.
159. Wolf, M.B., Wyllie, P.J., Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contributions to Mineralogy and Petrology 115 (1994), 369–383.
160. Zeck, H.P., An erupted migmatite from Cerro del Hoyazo, SE Spain. Contributions to Mineralogy and Petrology 26 (1970), 225–246.
161. Zeh, A., Jaguin, J., Poujol, M., Boulvais, P., Block, S., Paquette, J.-L., Juvenile crust formation in the northeastern Kaapvaal craton at 2.97 Ga – implication for Archean terrane accretion, and source of the Pietersburg gold. Precambrian Research 233 (2013), 20–43.
162. Zhang, C., Duan, Z., A model for C–O–H fluid in the Earth's mantle. Geochimica et Cosmochimica Acta 73 (2009), 2089–2102.
163. Zhang, C., Duan, Z., GFluid: an Excel spreadsheet for investigating C–O–H fluid composition under high temperatures and pressures. Computers & Geosciences 36 (2010), 569–572.
164. Zhu, C., Sverjensky, D.A., F-Cl-OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta 56 (1992), 3435–3467.