Инд. авторы: Thomas V.G., Fursenko D.A.
Заглавие: Antiskeletal Morphology of Crystals as a Possible Result of Their Regeneration
Библ. ссылка: Thomas V.G., Fursenko D.A. Antiskeletal Morphology of Crystals as a Possible Result of Their Regeneration // Crystal Growth & Design. - 2018. - Vol.18. - Iss. 5. - P.2912-2917. - ISSN 1528-7483. - EISSN 1528-7505.
Идентиф-ры: DOI: 10.1021/acs.cgd.7b01761; РИНЦ: 35529905; SCOPUS: 2-s2.0-85046426421; WoS: 000431599100030;
Реферат: eng: This paper presents a possible mechanism forming crystals with antiskeletal morphology due to their regeneration after partial dissolution. Consideration is carried out by numerical 2D-simulation of the coordinate zone evolution of a single crystal ball using the kinematic model of regeneration crystal surface growth. According to this model, the genetic predecessors of subindividuals on the regenerated crystal are protrusions formed on its surface during the partial dissolution stage. It has been shown that the main parameter responsible for the antiskeletal morphology of regenerated crystals is the ratio of depression depths (l) between adjacent protrusions and protrusion radii (r), 0 < l/r < 1. When l/r <= 0.1, the stationary shape of the regenerating ball is a polyhedron. If l/r > 0.6, there is a ball with a rough surface covered by flat areas on the most slowly growing faces. The crystal with the antiskeletal morphology grows at intermediate values of l/r.
Ключевые слова: SYSTEMS; SURFACE GROWTH;
Издано: 2018
Физ. хар-ка: с.2912-2917
Цитирование: 1. Shafranovskii, I. I. Lectures on Crystal Morphology; Balkema: Rotterdam, 1973, p 174 (translated from Russian version-1968).
2. Ansheles, O. M. The Foundations of Crystallography; Leningrad, LSU, 1952; p 283 (In Russian).
3. Berg, W. F. Crystal growth from solutions. Proc. R. Soc. London, Ser. A 1938, 164, 79-95, 10.1098/rspa.1938.0006
4. Jackson, K.A.; Uhlmann, D. H.; Hunt, J. D. On the nature of crystal from melt. J. Cryst. Growth 1967, 1 (1), 1, 10.1016/0022-0248(67)90003-6
5. Cabrera, N.; Vermilyea, D. A. The growth of crystals from solution. In Growth and perfection of crystals; Chapman & Hall, Ltd., London, 1958; pp 393-408.
6. Sunagawa, I. Growth of Crystals in Nature. In Materials Science of the Earth's Interior; Terrapub: Tokyo, 1984; pp 63-105.
7. Punin, Yu. O.; Petrov, T. G.; Treivus, E. B. Low-temperature modeling of mineral formation processes. Zap. Vses. Mineral. O-va 1980, 109 (5), 517-529, (In Russian).
8. Treivus, E. B. Kinetics of growth and dissolution of crystals; Leningrad, LSU, 1979; p 248. (In Russian).
9. Palyanov, Yu. N.; Chepurov, A. I.; Khokhryakov, A. F. Growth and morfology of antiskeletal crystals of synthetic diamond. Miner. Zh. 1985, 7 (5), 50-61, (In Russian)
10. Palyanov, Yu.N.; Borzdov, Yu.M.; Kupriyanov, I. N.; Khokhryakov, A. F. Effect of H2O on Diamond Crystal Growth in Metal-Carbon Systems. Cryst. Growth Des. 2012, 12, 5571-5578, 10.1021/cg301111g
11. Palyanov, Yu.N.; Khokhryakov, A. F.; Borzdov, Yu.M.; Kupriyanov, I. N. Diamond Growth and Morphology under the Influence of Impurity Adsorption. Cryst. Growth Des. 2013, 13, 5411-5419, 10.1021/cg4013476
12. Khokhryakov, A. F.; Sokol, A. G.; Borzdov, Yu.M.; Palyanov, Yu.N. Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures. J. Cryst. Growth 2015, 426, 276-282, 10.1016/j.jcrysgro.2015.06.022
13. Chuhrov, F. V.; Bonshtedt-Kupletskaya, E. M., Eds. Minerals-Reference book; Nauka: Moscow, 1965; Vol II, p 296 (In Russian).
14. Askhabov, A. M. Regeneration of Crystals; Nauka: Moscow, 1979; p 174. (in Russian).
15. Gavryushkin, P. N.; Thomas, V. G. Growth Kinematics of the Regeneration Surfaces of Crystals. Crystallogr. Rep. 2009, 54, 334-341, 10.1134/S1063774509020266
16. Thomas, V. G.; Gavryushkin, P. N.; Fursenko, D. A. 2D Modeling of the Regeneration Surface Growth on Crystals. Crystallogr. Rep. 2012, 57, 848, 10.1134/S106377451204013X
17. Thomas, V. G.; Gavryushkin, P. N.; Fursenko, D. A. 2D Modeling of Regeneration Surface Growth on a Single-Crystal Sphere. Crystallogr. Rep. 2015, 60, 583-593, 10.1134/S1063774515030219
18. Prywer, J. Theoretical analysis of changes in habit of growing crystals in response to variable growth rates of individual faces. J. Cryst. Growth 1999, 197, 271-285, 10.1016/S0022-0248(98)00934-8
19. Van Enckevort, W. J. P. Contact nucleation of steps: theory and Monte Carlo simulation. J. Cryst. Growth 2003, 259, 190-207, 10.1016/S0022-0248(03)01581-1
20. Gorodetsky, A.F.; Saratovkin, D. D. The dendritic shape of crystals formed by the way of antiskeletal growth. In Crystal Growth, Shubnikov, A.V.; Sheftal, N. N., Eds.; 1957; Vol 1, pp 190-198. (in Russian).
21. https://commons.wikimedia.org/wiki/File:Dolomite-Fluorite-cflo07b.jpg (date of access: 05.04.2018).
22. Gavryushkin, P. N. The kinematic model of the growth of regeneration surfaces of crystals; PhD thesis; IGM SB RAS, 2009. (in Russian).
23. Heimann, R. B. Auflösung von Kristallen 1975, 8, 272, 10.1007/978-3-7091-3402-3