Инд. авторы: Damiano E., Cavalli E., Tarasova A.Y., Isaenko L.I., Tonelli M.
Заглавие: Polarized optical spectra of Ho3+-doped KPb2Cl5 single-crystal
Библ. ссылка: Damiano E., Cavalli E., Tarasova A.Y., Isaenko L.I., Tonelli M. Polarized optical spectra of Ho3+-doped KPb2Cl5 single-crystal // Journal of Luminescence. - 2018. - Vol.199. - P.71-77. - ISSN 0022-2313. - EISSN 1872-7883.
Идентиф-ры: DOI: 10.1016/j.jlumin.2018.02.068; РИНЦ: 35495625; SCOPUS: 2-s2.0-85043995977; WoS: 000430713100012;
Реферат: eng: The polarized absorption and emission spectra of a KPb2Cl5 (KPC) crystal activated with Ho3+ ions have been measured in the 400-4000 nm region. The absorption spectra have been analyzed in the framework of the Judd-Ofelt Theory and the results have been compared with those, contradictory, reported in literature. The emission measurements in near and mid infrared confirm the attractiveness of this material for 2, 3 and 4 mu m laser applications, thanks to the very low phonon cut-off (203 cm(-1)) of the host lattice.
Ключевые слова: RARE-EARTH IONS; SOLID-STATE LASERS; STIMULATED-EMISSION; SPECTROSCOPY; INTENSITIES; ABSORPTION; KPB2BR5; HO; Judd-Ofelt analysis; Optical properties; Crystal growth; Optical materials; Luminescence vs temperature;
Издано: 2018
Физ. хар-ка: с.71-77
Цитирование: 1. Eichhorn, M., Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions. Appl. Phys. B, 93, 2008, 269, 10.1007/s00340-008-3214-0.
2. Kaminskii, A., Crystalline Lasers: Physical Processes and Operating Schemes. 1996, CRC Press.
3. A.A. Kaminskii, Modern developments in the physics of crystalline laser materials, Phys. Stat. Sol. (a) 200. http://dx.doi.org/10.1002/pssa.200306705.
4. Rademaker, K., Payne, S.A., Huber, G., Isaenko, L.I., Osiac, E., Optical pump-probe processes in Nd3+-doped KPb2Br5, RbPb2Br5, and KPb2Cl5. J. Opt. Soc. Am. B, 22, 2005, 2610, 10.1364/JOSAB.22.002610.
5. Cornacchia, F., Toncelli, A., Tonelli, M., 2-μm lasers with fluoride crystals: research and development. Progr. Quant. Electron, 33, 2009, 61, 10.1016/j.pquantelec.2009.04.001.
6. Isaenko, L., Yelisseyev, A., Tkachuk, A., Ivanova, S., Vatnik, S., Merkulov, A., Payne, S., Page, R., Nostrand, M., New laser crystals based on KPb2Cl5 for IR region. Mater. Sci. Eng. B, 81, 2001, 188, 10.1016/S0921-5107(00)00735-2.
7. Nostrand, M.C., Page, R.H., Payne, S.A., Isaenko, L.I., Yelisseyev, A.P., Optical properties of Dy3+- and Nd3+-doped KPb2Cl5. J. Opt. Soc. Am. B, 18, 2001, 264, 10.1364/JOSAB.18.000264.
8. Tkachuk, A.M., Ivanova, S.É., Isaenko, L.I., Yelisseyev, A.P., Joubert, M.F., Guyot, Y., Payne, S., Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+: 1. Optical spectra and relaxation of excited states of the erbium ion in potassium-lead double chloride crystals. Opt. Spectr., 95, 2003, 722, 10.1134/1.1628721.
9. Faoro, R., Tonelli, M., Isaenko, L., Tarasova, A., Pashkov, V., Spectroscopy in the 1.4 and 1.8- μm wavelength regions of KPb2Cl5 single crystals doped with trivalent Thulium. J. Lumin., 180, 2016, 140, 10.1016/j.jlumin.2016.07.059.
10. Sardar, D.K., Chandrasekharan, S.R., Nash, K.L., Gruber, J.B., Burger, A., Roy, U.N., Intensity analysis and crystal-field modeling of Ho3+ in KPb2Cl5 host. J. Appl. Phys., 103, 2008, 093112, 10.1063/1.2919765.
11. Oyebola, O., Hömmerich, U., Brown, E., Trivedi, S., Bluiett, A., Zavada, J., Growth and optical spectroscopy of Ho-doped KPb2Cl5 for infrared solid-state lasers. J. Crys. Growth, 312, 2010, 1154, 10.1016/j.jcrysgro.2009.10.010.
12. Quimby, R., Condon, N., O'Connor, S., Bowman, S., Excited state dynamics in Ho:KPb2Cl5. Opt. Mater., 34, 2012, 1603, 10.1016/j.optmat.2012.04.004.
13. Merkulov, A.A., Isaenko, L.I., Pashkov, V.M., Mazur, V.G., Virovets, A.V., Naumov, D.Y., Crystal structure of KPb2Cl5 and KPb2Br5. J. Struct. Chem., 46, 2005, 103, 10.1007/s10947-006-0015-3.
14. Judd, B.R., Optical absorption intensities of rare-earth ions. Phys. Rev., 127, 1962, 750, 10.1103/PhysRev.127.750.
15. Ofelt, G.S., Intensities of crystal spectra of rare-earth ions. J. Chem. Phys., 37, 1962, 511, 10.1063/1.1701366.
16. M. Inokuti, F. Hirayama, Influence of energy transfer by the exchange mechanism on donor luminescence, J. Chem. Phys. 43 (6). http://dx.doi.org/10.1063/1.1697063.
17. Aull, B., Jenssen, H., Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electr., 18, 1982, 925, 10.1109/JQE.1982.1071611.
18. Boulon, G., Gaume-Mahn, F., Chakroun, A., Curie, D., Measurement of the fluorescence decay constants of bismuth(III) ion luminogenous center at low temperature. C. R. Acad. Sci. Paris B, 270, 1970, 111.
19. Esterowitz, L., Eckardt, R.C., Allen, R.E., Longwavelength stimulated emission via cascade laser action in Ho:YLF. Appl. Phys. Lett., 35, 1979, 236, 10.1063/1.91083.