Инд. авторы: Likhanov I.I., Regnier J.L., Santosh M.
Заглавие: Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean
Библ. ссылка: Likhanov I.I., Regnier J.L., Santosh M. Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean // Lithos. - 2018. - Vol.304. - P.468-488. - ISSN 0024-4937. - EISSN 1872-6143.
Идентиф-ры: DOI: 10.1016/j.lithos.2018.02.021; РИНЦ: 35069319; SCOPUS: 2-s2.0-85042746931; WoS: 000430029800028;
Реферат: eng: The tectonic evolution of the Siberian Cratonic margins offers important clues for global paleogeographic reconstructions, particularly with regard to the complex geological history of Central Asia. The Yenisey Ridge fold-and-thrust belt at the western margin of the Siberian Craton forms part of the Central Asian Orogenic Belt (CAOB) and is a key to understand the Precambrian tectonic evolution of the Siberian Craton and crustal growth in the CAOB, the world's largest Phanerozoic accretionary orogenic belt. Here we report for the first time, the occurrence of glaucophane schist relics in tectonites within the Yenisey shear zone which provides insights on Chilean-type convergent boundary. We present results from isotope geochronology (SHRIMP zircon analysis and mica Ar-40/Ar-39 dating), coupled with P-T calculations derived from conventional geothermobarometry and pseudosections in the system NCKFMASH that suggest two superimposed metamorphic events. During the first stage, glaucophane schists formed at around 640-620 Ma at P-T conditions of 8-10 kbar and 400-450 degrees C. In the second stage, the rocks experienced dynamic metamorphism (c. 600 Ma) at 11-15 kbar/550-640 degrees C. The differences in P-T parameters between weakly deformed rocks and intensely deformed tectonites and P-T paths suggest distinct tectonic processes. Geochemical features of the mafic tectonites suggest N-MORB and E-MORB affinity, and the zircon U-Pb ages suggest formation of the protoliths at 701.6 +/- 8.4. The sequence of spreading, subduction and shear deformation identified in our study correlate with the early stages of development of the Paleo-Asian Ocean at the western margin of the Siberian Craton and supports the spatial proximity of Siberia and Laurentia at 700-600 Ma, as proposed for the Late Neoproterozoic paleogeographic reconstructions and as robustly constrained from large igneous province (LIP) record. (C) 2018 Elsevier B.V. All rights reserved.
Ключевые слова: EMPIRICAL CALIBRATION; BARROVIAN METAMORPHISM; TRANSANGARIAN REGION; COLLISIONAL METAMORPHISM; FE-RICH; P-T PATHS; ULTRA-HIGH PRESSURE; AL-RICH METAPELITES; Siberian Craton; Paleo-Asian Ocean; Ar-40/Ar-39 ages; Zircon U-Pb SHRIMP geochronology; Pseudosections; Geothermobarometry; SOUTH YENISEI RIDGE; PRECAMBRIAN COMPLEXES;
Издано: 2018
Физ. хар-ка: с.468-488
Цитирование: 1. Aerden, D.G.A.M., Bell, T.H., Puga, E., Sayab, M., Lozano, J.A., Diaz de Federico, A., 2013.Multi-stage mountain building vs. relative plate motions in the Betic Cordillera de-duced from integrated microstructural and petrological analysis of porphyroblast inclusion trails. Tectonophysics 587, 188-206.
2. Beaumont, C., Jamieson, R.A., Nguyen, M.H., Lee, B., 2001. Hymalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denuda-tion. Nature 414, 738-742.
3. Bebout, G.E., Ryan, J.G., Leeman, W.P., Bebout, A.E., 1999. Fractionation of trace elementsby subduction-zone metamorphism -effect of convergent-margin thermal evolution.Earth Planet. Sci. Lett. 171, 63-81.
4. Bell, T.H., Rieuwers, M.T., Cihan, M., Evans, T.P., Ham, A.P., Welch, P.W., 2013. Inter-relationships between deformation partitioning, metamorphism and tectonism.Tectonophysics 587, 119-132.
5. Belyaev, O.A., Mitrofanov, F.P., Petrov, V.P., 1998. Local variations of P-T parameters oftectonometamorphism in ductile shear zone. Dokl. Earth Sci. 361 (3), 370-374.
6. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C.,2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology.Chem. Geol. 200, 155-170.
7. Blundy, J.D., Holland, T.J.B., 1990. Calcic amphibole equilibria and new amphibole-plagio-clase geothermometer. Contrib. Mineral. Petrol. 104, 208-224.
8. Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In:Henderson, P. (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam,pp. 63-114.
9. Brown, E.H., Walker, N.W., 1993. A magma-loading model for Barrovian metamorphismin the Southeast Coast Plutonic Complex, British Columbia and Washington. Geol.Soc. Am. Bull. 105, 479-500.
10. Burg, J.-P., Gerya, T.V., 2005. The role of viscous heating in Barrovian metamorphism:thermomechanical models and application to the Lepontine Dome in the CentralAlps. J. Metamorph. Geol. 23, 75-95.
11. Burg, J.-P., Schmalholz, S.M., 2008. Viscous heating allows thrusting to overcome crustalscale buckling: numerical investigation with application to the Himalayan syntaxes.Earth Planet. Sci. Lett. 274, 189-203.
12. Burov,E.,Yamato,P.,2008.Continentalplatecollision,P-T-t-zconditionsandunstablevs.stable plate dynamics: insights from thermo-mechanical modeling. Lithos 103, 178-204.
13. Cawood, P.A., Strachan, R.A., Pisarevsky, S.A., Gladkochub, D.P., Murphy, J.B., 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth Planet. Sci. Lett. 449, 118-126.
14. Chikov, B.M., Belyaev, S.Yu., Serdyuk, S.S., 2000. Tectonics of Central Siberia. Angara-Yenisey region: general tectonics. Tectonics of Russia. GEOS, Moscow, pp. 567-569 (in Russian).
15. Chu, X., Ague, J.J., Podladchikov, Y.Y., Tian, M., 2017. Ultrafast eclogite formation via melting-induced overpressure. Earth Planet. Sci. Lett. 479, 1-17.
16. Clarke, G.L., Powell, R., Fitzherbert, J.A., 2006. The lawsonite paradox: a comparison of field evidence and mineral equilibria modelling. J. Metamorph. Geol. 24, 715-725.
17. Coggon, R., Holland, T.J.B., 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J. Metamorph. Geol. 20, 683-696.
18. Corsini, M., Bosse, V., Feraud, G., Demoux, F., Crevola, G., 2009. Exhumation processes dur-ing post-collisional stage in the Variscan belt revealed by detailed 40 Ar/39 Ar study (Tanneron massif, SE France). Int. J. Earth Sci. 99, 327-341.
19. Dale, J., Holland, T., Powell, R., 2000. Hornblende-garnet-plagioclase thermobarometry: anatural assemblage calibration of the thermodynamics of hornblende. Contrib. Min-eral. Petrol. 140, 353-362.
20. Detkov, V.A., Val'chak, V.I., Goryunov, N.A., Evgrafov, A.A., 2007. Structure of the Earth'scrust and upper mantle in the south of the Siberian Platform in section of Batholithand Altai-Severnaya Zemlya reference routes. Models of the Earth's Crust and Upper Mantle from Results of Deep Seismic Profiling. VSEGEI, St. Petersburg, pp. 26-31 (in Russian).
21. Diener, J.F.A., Powell, R., White, R.W., Holland, T.J.B., 2007. A new thermodynamic model forclino-andorthoamphibolesinthesystem Na 2 O-CaO-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O-O. J. Metamorph. Geol. 25, 631-656.
22. Dobretsov, N.L., 2003. Evolution of the structures in the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian foldbelt (Paleoasian Ocean). Russ. Geol. Geophys. 44, 5-27.
23. Egorov,A.S., 2004. Deep-seated structure and geodynamics of the lithosphere of Northern Eurasia: evidence from geological-geophysical modeling along the geotraverses of Russia. VSEGEI, St. Petersburg, p. 199 (in Russian).
24. Ernst, W.G., 1963. Petrogenesis of glaucophane schists. J. Petrol. 4, 1-30.
25. Ernst, W.G., 1988. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 16, 1081-1084.
26. Ernst, W.G., 2010. Subduction-zone metamorphism, calc-alkaline magmatism, and convergent-margin crustal evolution. Gondwana Res. 18, 8-16.
27. Ernst, R.E., Hamilton, M.A., Soderlund, U., Hanes, J.A., Gladkochub, D.P., Okrugin, A.V.,Kolotilina, T., Mekhonoshin, A.S., Bleeker, W., LeCheminant, A.N., Buchan, K.L.,Chamberlain, K.R., Didenko, A.M., 2016. Long-lived connection berween southern Siberia and northern Lavrentia in the Proterozoic. Nat. Geosci. 9, 464-469.
28. Evans, B.W., 1990. Phase relations of epidote-blueschists. Lithos 25, 3-23.
29. Faccenda,M.,Gerya, T.V.,Burlini,L.,2009. Deepslab hydration induced bybendingrelated variations in tectonic pressure. Nat. Geosci. 2, 790-793.
30. Fornash, K.F., Cosca, M.A., Whitney, D.L., 2016. Tracking the timing of subduction and exhumation using
31. Ar/39 Ar phengite ages in blueschist-and eclogite-facies rocks (Sivrihisar, Turkey). Contrib. Mineral. Petrol. 171:67. https://doi.org/10.1007/s00410-016-1268-2.
32. Fréville, K., Cenki-Tok, B., Trap, P., Rabin, M., Leyreloup, A., Régnier, J.-L., Whitney, D.L.,2016. Thermal interaction of middle and upper crust during gneiss dome formation:example from the Montagne Noire (French Massif Central). J. Metamorph. Geol. 34,447-462.
33. Gerya, T., 2015. Tectonic overpressure and underpressure in lithospheric tectonics and metamorphism. J. Metamorph. Geol. 33, 785-800.
34. Gladkochub, D.P., Pisarevsky, S.A., Stanevich, А.М., Donskaya, T.V., Mazukabzov, A.M.,2013. When Siberia broke up from Rodinia? Evidence from detrital zircon geochronology. In: Veselovskiy, R., Rodinia, Lubnina N. (Eds.), 2013: Supercontinental Cycles and Geodynamics Symposium 2013. PERO Press, Moscow, p. 31.
35. Green, E., Holland, T., Powell, R., 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. Am. Mineral. 92, 1181-1189.
36. Harrison, T.M., Heizler, M.T., Loreva, O.M., et al., 1994. A chlorine disinfectant for excessargon released from K-feldspar during step heating. Earth Planet. Sci. Lett. 123,95-104.
37. Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to thegarnet-biotite geothermometer. Am. Mineral. 85, 881-889.
38. Holland, T., Baker, J., Powell, R., 1998. Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al 2 O 3 -SiO 2 -H 2 O. Eur. J. Mineral. 10,395-406.
39. Holland, T.J.B., Blundy, J.D., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase geothermometry. Contrib. Mineral. Petrol. 116,433-447.
40. Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309-343.
41. Holland, T., Powell, R., 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol.145, 492-501.
42. Huerta, A.D., Royden, L.H., Hodges, K.V., 1999. The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens. J. Metamorph. Geol.17, 349-366.
43. Ivanov, S.N., Rusin, A.I., 1997. Continental rift metamorphism. Geotectonics 1, 3-15.
44. Jamieson, R.A., Beaumont, C., Nguyen, M.H., Lee, B., 2002. Interaction of metamorphism, deformation and exhumation in large convergent orogens. J. Metamorph. Geol. 20,9-24.
45. Johansson, Å., 2014. From Rodinia to Gondwana with the ‘SAMBA' model-a distant view from Baltica towards Amazonia and beyond. Precambrian Res. 244, 226-235.
46. Kachevsky, L.K., Kachevskaya, G.I., Grabovskaya, J.M., 1998. Geological Map of Yenisey Ridge, Scale 1:500000. Krasnoyarsk, Krasoyarskgeols'emka, 6 sheets (in Russian).
47. Kohn, M.J., Spear, F.S., 1989. Empirical calibration of geobarometers for the assemblage garnet + hornblende + plagioclase + quartz. Am. Mineral. 74, 77-84.
48. Kohn, M.J., Spear, F.S., 1991. Error propagation for barometers. Am. Mineral. 76, 138-147.
49. Kohn, M.J., Spear, F.S., 2000. Two new barometers for garnet amphibolites with applications to southeastern Vermont. Am. Mineral. 75, 89-96.
50. Korobeinikov, S.N., Polyansky, O.P., Likhanov, I.I., Sverdlova, V.G., Reverdatto, V.V., 2006.Mathematical modeling of overthrusting as a cause of andalusite-kyanite metamor-phic zoning in the Yenisey Ridge. Dokl. Earth Sci. 408, 652-656.
51. Koulakovsky, A.L., Morozov, Yu.A., Smul'skaya, A.I., 2015. Tectonic stress asadditional thermodynamic factor of metamorphism. Geophys. Res. 16, 44-68(in Russian).
52. Kozlov, P.S., Likhanov, I.I., Reverdatto, V.V., Zinov'ev, S.V., 2012. Tectonometamorphic evolution of the Garevka polymetamorphic complex (Yenisey Ridge). Russ. Geol.Geophys. 53, 1133-1149.
53. Kozlovsky,V.M., Koulakovsky,A.L.,Mitrofanov, F.P., Morozov,Yu.A., Smul'skaya, A.I., 2012.About variability of thermodynamic parameters of metamorphism in local zones of deformations. Modern Problems of Magmatism and Metamorphism. St. Petersburg State University, St. Petersburg, pp. 271-275.
54. Kuzmichev, A.B., 2009. On the Age of Oceanic Metagabbro (Zircon, SHRIMP) of Isakovka Ophiolite Belt (Yenisey Ridge). Geodynamic Evolution of Central Asian Orogenic Belt (from Ocean to Continent). vol. I. Institute of Earth Crust, pp. 154-155 Irkut00sk. (in Russian).
55. Kuzmichev, A.B., Padepin, I.P., Antonov, A.V., 2008. Late Riphean Borisikha ophiolite (Yenisey Ridge): U-Pb zircon age and tectonic setting. Russ. Geol. Geophys. 49 (12), 883-893.
56. Kuzmichev, A.B., Sklyarov, E.V., 2016. The Precambrian of Transangaria, Yenisey Ridge (Siberia): Neoproterozoic microcontinent, Grenville-age orogeny, or reworked margin of the Siberian Craton. J. Asian Earth Sci. 115, 419-441.
57. Leake,B., Woolley,A., Arps, C., Birch,W.,Gilbert, M., Grice, J., Hawthorne,F., Kato, A., Kisch, H., Krivovichev, V., Linthout, K., Laird, J., Mandarino, J., Maresch, W., Nickel, E., Rock,486 I.I. Likhanov et al./Lithos 304-307 (2018) 468-488
58. N., Schumacher, J., Smith, D., Stephen-son, N., Ungaretti, L., Whittaker, E., Youzhi, G.,1997. Nomenclature of amphiboles: report of the subcommitee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can. Mineral. 35, 219-246.
59. Leech, M.L., Stockli, D.F., 2000. The late exhumation history of the ultrahigh-pressure Maksyutov complex, south Ural Mountains, from new apatite fission track data. Tectonics 19, 153-167.
60. Li,Z.H.,Gerya,T.V.,Burg,P.,2010.Influenceof tectonicoverpressureonP-Tpathsof HP-UHP
61. rocks in continental collision zones: thermomechanical modelling. J. Metamorph. Geol.28, 227-247.
62. Likhanov, I.I., Kozlov, P.S., Polyansky, O.P., Popov, N.V., Reverdatto, V.V., Travin, A.V.,Verschinin, A.E., 2007. Neoproterozoic age of collisional metamorphism in theTransangarian Yenisey ridge: 40 Ar-39 Ar evidence. Dokl. Earth Sci. 413, 234-237.
63. Likhanov, I.I., Kozlov, P.S., Popov, N.V., Reverdatto, V.V., Vershinin, A.E., 2006. Collision metamorphism as a result of thrusting in the Transangara region of the Yenisey ridge. Dokl. Earth Sci. 411, 1313-1317.
64. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., 2017. Early stages of the evolution of the Paleoasian Ocean on the western margin of the Siberian Сraton: evidence from geo-chemical and geochronological studies of Yenisey ridge. Dokl. Earth Sci. 476 (1),1089-1093.
65. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., Kozlov, P.S., 2014. Grenville tectonic events and evolution of the Yenisey ridge at the western margin of the Siberian craton. Geotectonics 48, 371-389.
66. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., Krylov, A.A., Kozlov, P.S., Khiller, V.V., 2016. Metamorphic evolution of ultrahigh-temperature Fe-and Al-rich granulites in the south Yenisey ridge and tectonic implications. Petrology 24 (4), 392-408.
67. Likhanov, I.I., Nozhkin, A.D., Savko, K.A., 2018. Accretionary tectonics of rock complexes in the western margin of the Siberian Craton. Geotectonics 52 (1), 22-44.
68. Likhanov, I.I., Polyanskii, O.P., Reverdatto, V.V., Kozlov, P.S., Vershinin, A.E., Krebs, M., Memmi, I., 2001. Metamorphic evolution of high-alumina metapelites near the Panimba overthrust (Yenisey range): mineral associations, PT-conditions and tectonic model. Geol. Geofiz. 42, 1205-1220.
69. Likhanov, I.I., Polyansky, O.P., Reverdatto, V.V., Memmi, I., 2004. Evidence from Fe-and Al-rich metapelites for thrust loading in the Transangarian region of the Yenisey ridge,eastern Siberia. J. Metamorph. Geol. 22, 743-762.
70. Likhanov, I.I., Reverdatto, V.V., 2002. Mass transfer during andalusite replacement by kyanite in Al-and Fe-rich metapelites in the Yenisei range. Petrology 10, 479-494.
71. Likhanov, I.I., Reverdatto, V.V., 2007. Provenance of Precambrian Fe-and Al-rich metapelites in the Yenisey ridge and Kuznetsk Alatau, Siberia: geochemical signa-tures. Acta Geol. Sin. English Ed. 81, 409-423.
72. Likhanov, I.I., Reverdatto, V.V., 2008. Precambrian Fe-and Al-rich pelites from the Yenisey ridge, Siberia: geochemical signatures for protolith origin and evolution during metamorphism. Int. Geol. Rev. 50, 597-623.
73. Likhanov, I.I., Reverdatto, V.V., 2011a. Neoproterozoic collisional metamorphism in overthrust terranes of the Transangarian Yenisey ridge, Siberia. Int. Geol. Rev. 53, 802-845.
74. Likhanov, I.I., Reverdatto, V.V., 2011b. Lower Proterozoic metapelites in the northern part of the Yenisey ridge: nature, age of protolith, and mass balance analysis during collisional metamorphism. Geochem. Int. 49, 224-252.
75. Likhanov, I.I., Reverdatto, V.V., 2014a. Geochemistry, age and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey ridge. Geochem. Int. 52, 1-21.
76. Likhanov, I.I., Reverdatto, V.V., 2014b. P-T-t сonstraints on the metamorphic evolution of the Transangarian Yenisey ridge: geodynamic and petrological implications. Russ. Geol. Geophys. 55, 299-322.
77. Likhanov, I.I., Reverdatto, V.V., 2015. Evidence of middle Neoproterozoic extensional tectonic settings along the western margin of Siberian craton: implications for the breakup of Rodinia. Geochem. Int. 53, 671-689.
78. Likhanov,I.I., Reverdatto,V.V., 2016. Geochemistry, petrogenesis, andage of metamorphic rocks of the Angara complex at the junction of south and north Yenisey ridge. Geochem. Int. 54 (2), 127-148.
79. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., 2011. Сollision-related metamorphic complexes of the Yenisey ridge: their evolution, ages, and exhumation rate. Russ. Geol.Geophys. 52, 1256-1269.
80. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., 2013a. The first data on Mesoproterozoic tectonic events in the geological history of the South Yenisey Ridge. Dokl. Earth Sci. 453, 1274-1277.
81. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., Sukhorukov, V.P., 2013b. Three metamorphic events in Precambrian P-T-t history of the Transangarian Yenisey ridge recorded in garnet grains in metapelites. Petrology 21, 561-578.
82. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Zinov'ev, S.V., 2013c. The Neoproterozoic trans-Angara dike belt, Yenisey range, as an indicator of extension and breakup of Rodinia. Dokl. Earth Sci. 450, 613-617.
83. Likhanov, I.I., Reverdatto, V.V., Zinov'ev, S.V., Nozhkin, A.D., 2013d. Age of blastomylonites of the Yenisey regional shear zone as evidence of the Vendian accretionary-collision events at the western margin of the Siberian Сraton. Dokl. Earth Sci. 450, 489-493.
84. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., Sukhorukov, V.P., 2015. P-T-t con-straintsonpolymetamorphiccomplexes of theYeniseyridge,EastSiberia:implicationsfor Neoproterozoic paleocontinental reconstructions. J. Asian Earth Sci. 113, 391-410.
85. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Popov, N.V., 2008a. Collision metamorphism of Precambrian complexes in the Transangarian Yenisey range. Petrology 16, 136-160.
86. Likhanov, I.I., Reverdatto, V.V., Verschinin, A.E., 2008b. Fe-and Al-rich metapelites of the Teya sequence, Yenisey range: geochemistry, protoliths and the behavior of their matter during metamorphism. Geochem. Int. 46, 17-36.
87. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Popov, N.V., 2009. Kyanite-sillimanite metamorphism of the Precambrian complexes, Transangarian region of the Yenisey ridge. Russ. Geol. Geophys. 50, 1034-1051.
88. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Zinoviev, S.V., Khiller, V.V., 2015. P-T-t recon-structions of south Yenisey ridge metamorphic history (Siberian craton): petrologicalconsequencesandapplication to supercontinental cycles. Russ.Geol. Geophys. 56 (6),805-824.
89. Likhanov, I.I., Reverdatto, V.V., Memmi, I., 1994. Short-range mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro massif (Russia). Eur.J. Mineral. 6, 133-144.
90. Likhanov, I.I., Reverdatto, V.V., Sheplev, V.S., Verschinin, A.E., Kozlov, P.S., 2001. Contact metamorphism of Fe-and Al-rich graphitic metapelites in the Transangarian regionof the Yenisey Ridge, eastern Siberia, Russia. Lithos 58, 55-80.
91. Likhanov, I.I., Santosh, M., 2017. Neoproterozoic intraplate magmatism along the western margin of the Siberian craton: implications for breakup of the Rodinia supercontinent. Precambrian Res. 300, 315-331.
92. Loreva, O.M., Richter, F.M., Harrison, T.M., 1989. The 40Ar/39Ar thermochronometry of slow cooled samples having a distribution of diffusion domain sizes. J. Geophys. Res. 94 (B12), 17917-17935.
93. Ludwig, K.R., 1999. User's Manual for Isoplot/Ex, Version 2.10, A Geochronological Toolkit for Microsoft Excel. Vol. 1. Berkeley Geochronology Center Special Publication (46 pp.).
94. Ludwig, K.R., 2000. SQUID 1.00, A User's Manual. Vol. 2. Berkeley Geochronology CenterSpecial Publication (19 pp.).
95. Mancktelow, N.S., 2008. Tectonic pressure: theoretical concepts and models. Lithos 103,149-177.
96. Maruyama, S., Liou, J.G., Terabayashi, M., 1996. Blueschists and eclogites of the world andtheir exhumation. Int. Geol. Rev. 38, 485-594.
97. Massonne, H.J., Schreyer, W., 1987. Phengite geobarometry based on the limitingassemblage with K-feldspar, phlogopite, and quartz. Contrib. Mineral. Petrol. 96,212-224.
98. Metelkin, D.V., Vernikovsky, V.A., Kazansky, A.Y., 2012. Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the late Mesozoic: Paleomagnetic record and reconstructions. Russ. Geol. Geophys. 53, 791-794.
99. Mitrofanov, G.L., Mordovskaya, T.V., Nikol'sky, F.V., 1988. Structure of the crust stacking in certain marginal parts of the Siberian Platform. Tectonics of Platform Regions. Nauka,Novosibirsk, pp. 169-173 (in Russian).
100. Moulas, E., Podladchikov, Y.Y., Aranovich, L.Y., Kostopoulos, D., 2013. The problem of depth in geology: when pressure does not translate into depth. Petrology 21 (6),577-587.
101. Nozhkin, A.D., Borisenko, A.S., Nevolko, P.A., 2011. Stages of late Proterozoic magmatism and periods of Au mineralization in the Yenisey ridge. Russ. Geol. Geophys. 52, 124-143.
102. Nozhkin, A.D., Dmitrieva, N.V., Likhanov, I.I., Serov, P.A., Kozlov, P.S., 2016a. Geochemical, isotopic and geochronological evidence for sub-synchronous island-arc magmatism and terrigenous sedimentation (Predivinsk terrane of the Yenisey Ridge). Russ. Geol. Geophys. 57 (11), 1570-1590.
103. Nozhkin, A.D., Turkina, O.M., Likhanov, I.I., Dmitrieva, N.V., 2016b. Late Paleoproterozoic volcanic associations in the southwestern Siberian Craton (Angara-Kan block). Russ.Geol. Geophys. 57 (2), 247-264.
104. Nozhkin, A.D., Likhanov, I.I., Reverdatto, V.V., Bayanova, T.B., Zinoviev, S.V., Kozlov, P.S.,Popov, N.V., Dmitrieva, N.V., 2017a. Late Vendian postcollisional leucogranites of Yenisei Ridge. Dokl. Earth Sci. 474, 674-679.
105. Nozhkin, A.D., Likhanov, I.I., Bayanova, T.B., Serov, A.P., 2017b. First data on Late Vendian granitoid magmatism of the northwestern Sayan-Yenisei accretionary belt. Geochem. Int. 55, 792-801.
106. Nozhkin, A.D., Turkina, O.M., Bibikova, E.B., Terleev, A.A., Khomentovskii, V.V., 1999.Riphean granite-gneiss cupola of the Yenisey range: geology and U-Pb isotopic age.Russ. Geol. Geophys. 40, 1305-1313.
107. Nozhkin, A.D., Turkina, O.M., Dmitrieva, N.V., Likhanov, I.I., 2015. Age and P-T parameters of metamorphism of metaterrigenous-carbonate deposits of the Derba block (east Sayan). Dokl. Earth Sci. 461 (2), 390-393.
108. Passchier, C.W., Trouw, R.A.J., 2005. Microtectonics. 2nd ed. Springer-Verlag, Berlin, Heidelberg (366 pp.).Peacock, S.M., 1989. Numerical constraints on rates of metamorphism, fluid production, and fluid flux during regional metamorphism. Geol. Soc. Am. Bull. 101, 476-485.
109. Pearce, J.A., 1976. Statistical analysis of major element patterns in basalts. J. Petrol. 17,15-43.
110. Perchuk, A.L., Safonov, O.G., Smit, C.A., van Reenen, D.D., Zakharov, V.S., Gerya, T.V., 2016.Precambrian Ultra-Hot Orogenic Factory: Making and Reworking of Continental Crust. https://doi.org/10.1016/j.tecto.2016.11.041.
111. Petrini, K., Podladchikov, Yu., 2000. Lithospheric pressure-depth relationship in compressive regions of thickened crust. J. Metamorph. Geol. 18, 67-77.
112. Pisarevsky, S.A., Natapov, L.M., Donskaya, T.V., Gladkochub, D.P., Vernikovsky, V.A., 2008.Proterozoic Siberia: a promontory of Rodinia. Precambrian Res. 160, 66-76.
113. Pleuger, J., Podladchikov, Y.Y., 2014. A purely structural restoration of the NFP20-east cross section and potential tectonic overpressure in the Adula nappe (central Alps). Tectonics 33, 656-685.
114. Powell, R., Holland, T.J.B., 1994. Optimal geothermometry and geobarometry. Am. Mineral. 79, 120-133.
115. Powell, R., Holland, T.J.B.H., Worley, B., 1998. Calculating phase diagrams involving solid so-lutions via non-linear equations, with examples using THERMOCALC. J. Metamorph.Geol. 16, 577-588.
116. Price, N.J., Cosgrove, J.W., 1990. Analysis of Geological Structures. Cambridge UniversityPress (502 pp.).
117. Priyatkina, N., Collins, W.J., Khudoley, A.K., Letnikova, E.F., Huang, H.-Q., 2018. The Neoproterozoic evolution of the westernSiberiancraton margin: U-Pb-Hf isotopicre-cords of detrial zircons from the Yenisey ridge and the Prisayan uplift. Precambrian Res. 305, 197-217. 487 I.I. Likhanov et al./Lithos 304-307 (2018) 468-488
118. Priyatkina, N., Collins, W.J., Khudoley, A.K., Zastrozhnov, D., Ershova, V., Chambarlain, K.,Proskurnin, V., Shatsillo, A., 2017. The Proterozoic evolution of northern Siberian craton margin: a comparison of U-Pb-Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. Int. Geol. Rev. 59, 1632-1656.
119. Priyatkina, N., Khudoley, A.K., Collins, W.J., Kuznetsov, N.B., Huang, H.-Q., 2016. Detrital zircon record of Meso-and Neoproterozoic sedimentary basins in northern part of the Siberian craton: characterizing buried crust of the basement. Precambrian Res.285, 21-38.
120. Régnier, J.-L., Mezger, J.E., Passchier, C.W., 2007. Metamorphism of Precambrian-Paleozoic schists of the Menderes core series and contact relationschips with Proterozoic orthogneisses of the western cine massif, Anatolide belt, western Turkey. Geol. Mag. 144, 67-104.
121. Reverdatto,V.V.,Likhanov,I.I.,Polyansky,O.P.,Sheplev,V.S.,Kolobov,V.Yu.,2017. Nature and Models of Metamorphism. Publishing House SB RAS, Novosibirsk (331 pp. in Russian).
122. Ruppel, C., Hodges, K.V., 1994. Pressure-temperature-time paths from two-dimensional thermal models: prograde, retrograde and inverted metamorphism. Tectonics 13, 17-44.
123. Safonova, I., 2017. Juvenile versus recycled crust in the central Asian Orogenic Belt:implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res. 47, 6-47.
124. Safonova, I., Kotlyarov, A., Krivonogov, S., Xiao, W., 2017. Intra-oceanic arcs of the paleo-Asian Ocean. Gondwana Res. 50, 167-194.
125. Sal'nikov, А.S., 2009. Seismological Structure of the Earth's Crust in the Platform and Folded Areas of Siberia Based on Regional Refraction Seismic Data. Siberian Research Institute of Geology, Geophysics and Mineral Resources Press, Novosibirsk, p. 132 (in Russian).
126. Schmalholz, S.M., Duretz, T., Schenker, F.L., Podladchikov, Y.Y., 2014. Kinematics and dy-namics of tectonic nappes: 2-D numerical modelling and implications for high and ultra-high pressure tectonism in the Western Alps. Tectonophysics 631, 160-175.
127. Schmalholz, S.M., Podladchikov, Y.Y., 2013. Tectonic overpressure in weak crustal-scale shear zones and implications for exhumation of high-pressure rocks. Geophys. Res. Lett. 40, 1984-1988.
128. Schmalholz, S.M., Podladchikov, Y.Y., 2014. Metamorphism under stress: the problem of relating minerals to depth. Geology 42, 733-734.
129. Shi, Y., Wang, C., 1987. Two-dimensional modeling of the P-T paths of regional metamor-phism in simple overthrust terranes. Geology 15, 1048-1051.
130. Spear, F.S., 1980. NaSi-CaA1 exchange equilibrium between plagioclase and amphibole: an empirical model. Contrib. Mineral. Petrol. 72, 33-41.
131. Spear, F.S., 1989. Relative thermobarometry and metamorphic P-T paths. In: Daly, J.S., Cliff, R.A., Yardley, B.W.D. (Eds.), Evolution of Metamorphic Belts. Vol. 43. Geological Society, Special Publication, London, UK, pp. 63-82.
132. Spear, F.S., Kohn, M.J., Cheney, J.T., Florence, F., 2002. Metamorphic, thermal, and tectonic evolution of central New England. J. Petrol. 43, 2097-2120.
133. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313-345.
134. Tajchmanova, L., Vrijmoed, J., Moulas, E., 2015. Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations.Lithos 216-217, 338-351.
135. Tajcmanova, L., 2013. Pressure variations in metamorphic rocks: implications for the in-terpretation of petrographic observations. Mineral. Mag. 77 (5), 2300.
136. Ten, A.A., 1993. Dynamic model of high pressure generation during shear rock deforma-tions (numerical results). Dokl. Earth Sci. 328 (3), 322-324.
137. Triboulet, C., 1992. The (Na-Ca) amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-Na-H2O. 1. An empirical calibration. J. Metamorph. Geol. 10, 545-556.
138. Vernikovsky, V.A., Kazansky, A.Yu., Matushkin, N.Yu., Metelkin, D.V., Sovetov, J.K., 2009.The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: geological, structural, sedimentological, geochroрпnological, and paleomagnetic data. Russ. Geol. Geophys. 50 (4), 380-393.
139. Vernikovsky, V.A., Vernikovskaya, A.E., Chernykh, A.I., Sal'nikova, E.B., Kotov, A.B., Kovach,V.P., Yakovleva, S.Z., Fedoseenko, A.M., 2001. Porozhnaya granitoids of the Enisei Ophiolite Belt: indicators of Neoproterozoic events on the Yenisey ridge. Dokl.Earth Sci. 381A (9), 1043-1046.
140. Vernikovsky, V.A., Vernikovskaya, A.E., Nozhkin, A.D., Ponomarchuk, V.A., 1994. Riphean ophiolites of the Isakov belt (Yenisey Ridge). Russ. Geol. Geophys. 35 (7-8), 146-156.
141. Vernikovsky, V.A., Vernikovskaya, A.E., Sal'nikova, E.B., Kotov, A.B., Chernykh, A.I., Kovach,V.P., Berezhnaya, N.G., Yakovleva, S.Z., 1999. New U-Pb data on the formation of the Predivinsk paleoisland-arc complex (Yenisey Ridge). Russ. Geol. Geophys. 40 (2),256-261.
142. Volkova, N.I., Khlestov, V.V., Sukhorukov, V.P., Khlestov, M.V., 2016. Geochemistry of metamorphosed pillow basalts of the Chara zone, NE Kazakhstan. Dokl. Earth Sci. 467 (2), 350-354.
143. Volkova, N.I., Sklyarov, E.V., 2007. High-pressure complexes of central Asian fold belt: geological setting, geochemistry, and geodynamic implications. Russ. Geol. Geophys. 48 (1), 83-90.
144. Vrijmoed, J.C., Podladchikov, Y.Y., Andersen, T.B., Hartz, E.H., 2009. An alternative model for ultra-high pressure in the Svartberget Fe-Ti garnet-peridotite, western gneiss re-gion, Norway. Eur. J. Mineral. 21, 1119-1133.
145. Vrublevsky, V.V., Gertner, I.F., Tishin, P.A., Reverdatto, V.V., Izokh, A.E., Yudin, D.S., 2011. Neoproterozoic carbonatite magmatism of the Yenisey ridge, Central Siberia: 40 Ar/39 Ar geochronology of the Penchenga rock complex. Dokl. Earth Sci. 437 (2), 443-448.
146. Wei, C.J., Powell, R., Zhang, L.F., 2003. Eclogites from the south Tianshan, NW China: petrological characteristic and calculated mineral equilibria in the Na 2 O-CaO-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O system. J. Metamorph. Geol. 21, 163-179.
147. White, R.W., Powell, R., Holland, T.J.B., 2007. Progress relating to calculation of partial melting equilibria for metapelites. J. Metamorph. Geol. 16, 511-527.
148. Whitney, D.L., Evans, B.W., 2010. Abbreviations for rock-forming minerals. Am. Mineral. 95, 185-187.
149. Williams, I.S., 1998. U-Th-Pb geochronology by ion-microprobe. In: McKibben, M.A.,Shanks III, W.C., Ridley, W.I. (Eds.), Reviews in Economic Geology. Vol. 7, pp. 1-35.
150. Winkler, H.G.F., 1976. Petrogenesis of Metamorphic Rocks. Springer Verlag, New York. Wolfram, S., 2003. The Mathematica Book. 5th ed. Wolfram Media Inc, Champaign IL(544 pp.).
151. Wu, C.M., Zhang,J., Ren, L.D., 2004. Empiricalgarnet -biotite -plagioclase-quartz (GBPQ) geobarometry in medium-to high-grade metapelites. J. Petrol. 45, 1907-1921.
152. Wu, C.M., Zhao, G.C., 2006. Recalibration of the garnet-muscovite geothermometer and the garnet-muscovite-plagioclase-quartz geobarometer for metapelitic assemblages. J. Petrol. 47, 2357-2368.
153. Xiao, W., Kusky, T., Safonova, I., Seltmann, R., Sun, M., 2015. Tectonics of the central Asian Orogenic Belt and its Pacific analogues. J. Asian Earth Sci. 113, 1-6.
154. Yarmolyuk, V.V., Kovalenko, V.I., Kovach, V.P., Rytsk, E.Yu., Kozakov, I.K., Kotov, A.B., Sal'nikova, E.B., 2006. Early stages of the Paleoasian ocean formation: results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian-Cambrian complexes in the Central Asian Foldbelt. Dokl. Earth Sci. 411,1184-1189.